报告人:蒋卫华
报告地点:人民大街校区数学与统计学院104室
报告时间:2025年12月27日星期六9:30-10:30
邀请人:范猛
报告摘要:
In this talk, we present our recent work on equivariant Turing-Turing bifurcations and pattern formation in square spatial domains. For general reaction-diffusion systems with self-diffusion and cross-diffusion terms, we derive formulated results for the normal form and its coefficients on center manifolds near equivariant Turing-Turing singularities. Through analysis of the normal forms, we give approximate expressions for superposition-type steady states and their stability conditions in the original system. As an application, we analyze a plant-water interaction model to explore the formation of self-organized vegetation patterns in semi-arid regions.
主讲人简介:
蒋卫华,哈尔滨工业大学长聘教授,博士生导师。黑龙江省工业与应用数学学会常务理事,美国数学会《Math.Review》评论员。主要从事泛函微分方程和偏泛函微分方程的分支理论及应用的研究,在从高余维分支研究角度揭示复杂模式的存在性和稳定性方面有一些特色工作。主持和参与多项国家自然科学基金及省部级基金项目,研究工作主要发表在国内外诸如科学通报,JDE, JDDE,IMA J. Appl. Math.,DCDS A、B, SIADS,JNS,JMB, Physica D, SAPM, JMAA,Nonlinear Anal和Nonlinear Anal. RWA 等重要学术期刊上,出版专著一部。