当前位置: 首页 > 学术活动 > 正文
Traveling Waves for Burgers-Fisher-KPP Equations with Singularity
时间:2025年12月23日 09:58 点击数:

报告人:梅茗

报告地点:人民大街校区数学与统计学院619教室

报告时间:2026年01月04日星期日15:00-16:00

邀请人:张凯军、李敬宇

报告摘要:

In this talk, I will present a recent study on  Burgers-Fisher-KPP equation with singular slow/fast diffusion and singular/regular convection in the form of $u_t-D\Delta u^m+\alpha(u^p)_x=f(u)$ with $m,\,p>0$, focusing on the existence, non-existence, regularity and stability of traveling waves. The values of m and p essentially affect the existence/non-existence of regular/sharp traveling waves as well as their regularity.   By combining phase-plane analysis and variational techniques, we obtain a complete classification of existence/non-existence of regular/sharp traveling waves related to m and p. In the singular regimes with 0<p<1 or 0<m<1, where the convection or diffusion exhibit strong singularity at u=0, we introduce a change of variables to overcome the singularity, thereby deriving existence/non-existence results characterized by the minimal convection coefficient. Finally, for the case of slow diffusion $m>1$ with convex convection p>1, we prove the stability of non-critical traveling waves via $L^{1}$-weighted energy method. This is a joint work with Zhuangzhuang Wang, Rui Huang, Zejia Wang and Wenhuan Liang.

主讲人简介:

江西师范大学教授,国际知名偏微分方程学者,主要从事流体力学方程和时滞反应扩散方程的定性分析等方面的研究,在ARMA, SIMA, JDE等著名数学刊物发表论文140 余篇,是多个期刊的编委,一直承担加拿大自然科学基金项目及魁北克省自然科学基金项目。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn