报告人:戎小春
报告地点:腾讯会议ID:305-275-5327,密码:1229
报告时间:2025年12月29日星期一14:00-15:00
邀请人:孔令令
报告摘要:
戎小春现为美国罗格斯(Rutgers)大学数学系杰出教授。主要从事微分几何和度量黎曼几何的研究,在黎曼几何中的收敛和塌陷理论及其应用、正曲率流形几何和拓扑, Alexandrov几何等方面作出了若干基础性的贡献, 已在Ann. of Math, Invent. Math.等国际著名期刊上发表论文50余篇。戎小春教授是国际著名的度量黎曼几何专家, 国家级高层次领军人才, 曾获美国斯隆研究奖(Sloan Research Fellowships),美国数学会会士, 应邀在2002年国际数学家大会做45分钟报告。
主讲人简介:
Let X be a compact Gromov-Hausdorff limit space of a collapsing
sequence of compact asphercial n-manifolds, Mi, of Ricci curvature RicMi ≥ −(n−1) and any point in the Riemannian universal covering space of Mi is a Reifenberg point, or sectional curvature secMi ≥ −1, respectively. We conjecture that if the fundamental group of Mi satisfies a certain condition, then X is diffeomorphic, or homeomorphic to an aspherical manifold, respectively. In this talk, we will present a result that if Mi a diffeomorphic or homeomorphic to a nilmanifold, respectively, then X is diffeomorphic or homeomorphic to a nilmanifold, respectively.