报告人:潘佳垠
报告地点:腾讯会议ID:305-275-5327,密码:1222
报告时间:2025年12月22日星期一10:30-11:30
邀请人:孔令令
报告摘要:
Complete and noncompact manifolds with nonnegative Ricci curvature are known to have at least linear volume growth by the work of Calabi and Yau. In joint work with Dimitri Navarro and Xingyu Zhu, we prove two results on the fundamental groups of these manifolds with linear volume growth. First, the fundamental group contains a subgroup \mathbb{Z}^k of finite index. Second, if the Ricci curvature is positive, then the fundamental group is finite. The proofs are based on an analysis of the equivariant asymptotic geometry of successive \mathbb{Z}-folded covering spaces and a plane/halfplane rigidity result for RCD spaces.
主讲人简介:
潘佳垠,加州大学圣克鲁斯分校副教授,主要研究领域包括几何分析、黎曼几何和拓扑学,尤其专注于非负Ricci曲率流形及其极限空间的性质。代表作发表在JEMS, Adv. Math.等杂志上。