当前位置: 首页 > 学术活动 > 正文
Curvature Measures on Alexandrov spaces
时间:2025年12月17日 22:29 点击数:

报告人:李楠

报告地点:人民大街校区数学与统计学院317教室

报告时间:2025年12月19日星期五10:00-11:00

邀请人:孔令令

报告摘要:

A conjecture proposed by Naber says that if a sequence of $n$-dimensional non-collapsed manifolds $M_i$ Gromov-Hausdorff converges to $X$ with uniform lower curvature bound, then as a measure, the scalar curvature $scal_i dvol_{g_i}$ converges to a locally finite measure $\mu = R \, d\mathcal H^n +\Phi\, d\mathcal H^{n-1} + \Theta\, d\mathcal H^{n-2}$ on $X$. We will show that the integral of the scalar curvature on the smooth part of an Alexandrov space is locally finite and this affirms Naber's conjecture for the smooth part $R\, d\mathcal H^n$. We will also discuss the relation between this result and some conjectures by Yau and Gromov.

主讲人简介:

李楠,纽约市立大学,教授,研究方向:黎曼几何,几何分析,代表性成果发表在JDG,Adv. Math. 等杂志。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn