当前位置: 首页 > 学术活动 > 正文
On the best approximation by finite Gaussian mixtures
时间:2025年12月05日 21:03 点击数:

报告人:杨朋昆

报告地点:人民大街校区惟真楼523报告厅

报告时间:2025年12月12日星期五9:30-10:15

邀请人:郑术蓉

报告摘要:

We consider the problem of approximating a general Gaussian location mixture by finite mixtures. The minimum order of finite mixtures that achieve a prescribed accuracy is determined within constant factors for the family of mixing distributions with compact support or appropriate assumptions on the tail probability including subgaussian and subexponential. While the upper bound is achieved using the technique of local moment matching, the lower bound is established by relating the best approximation error to the low-rank approximation of certain trigonometric moment matrices, followed by a refined spectral analysis of their minimum eigenvalue. In the case of Gaussian mixing distributions, this result corrects a previous lower bound in [Wu and Verdú, 2010].

主讲人简介:

杨朋昆,清华大学统计与数据科学系副教授,本科毕业于清华大学,硕士博士毕业于伊利诺伊大学香槟分校,普林斯顿大学博士后,主要研究方向为机器学习、高维统计、算法与优化,现主持国家重点研发计划青年科学家项目,入选国家级高层次青年人才,成果发表于AoS, JMLR, TIT, NeurIPS, COLT等期刊与会议,多次获得IEEE等国际学会奖项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn