当前位置: 首页 > 学术活动 > 正文
Inversion Bias of Random Matrices: Precise Characterization, Implications for Randomized Numerical Linear Algebra, and Beyond
时间:2025年12月05日 21:00 点击数:

报告人:廖振宇

报告地点:人民大街校区惟真楼523报告厅

报告时间:2025年12月12日星期五11:00-11:45

邀请人:郑术蓉

报告摘要:

Given a random variable X with expectation E[X], one generally has E[1/X] \neq 1/E[X], due to the nonlinear nature of the inverse. A similar phenomenon holds for random matrices, and this fundamental inversion bias has important implications for modern statistical and numerical methods.

In this talk, I will discuss how this bias arises in a variety of randomized sketching techniques (including random sampling and random projections) which are commonly used in large-scale machine learning (ML) and randomized numerical linear algebra (RandNLA). Drawing on joint work with Michał Dereziński (Michigan), Edgar Dobriban (UPenn), Michael Mahoney (UC Berkeley), and Chengmei Niu (HUST), we exploit leave-one-out techniques from random matrix theory (RMT) to precisely characterize this inversion bias and show (in some cases at least) that it can be corrected with ease. Using these technical results, we establish problem-independent local convergence rates for sub-sampled Newton methods.

主讲人简介:

廖振宇,于法国巴黎萨克雷大学获数学与计算机博士学位,后在美国加州大学伯克利分校统计系和ICSI从事博士后研究工作,2021年起至今在华中科技大学电信学院工作,任副研究员。主要研究方向是机器学习理论与应用、高维统计和随机矩阵理论,成果发表于ICML、NeurIPS、ICLR、COLT、IEEE汇刊和AAP等机器学习和数据处理的会议与期刊,合著专著Random Matrix Methods for Machine Learning。任ICML、NeurIPS、ICLR、AISTATS和IJCNN等会议的领域主席和Statistics and Computing期刊编委。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn