当前位置: 首页 > 学术活动 > 正文
Efficient algorithms for phase retrieval
时间:2025年12月01日 10:17 点击数:

报告人:黄猛

报告地点:觅讯会议ID:01768091

报告时间:2025年12月03日星期三10:00-11:00

邀请人:徐东坡

报告摘要:

Phase retrieval is a technique used to recover a signal or image from phaseless measurements. It has important applications in fields such as optics, X-ray crystallography, and astronomy, where phase information is often lost during the measurement process. In this talk, we will introduce several recent phase retrieval algorithms and discuss their underlying theory. We will first focus on algorithms that employ spectral initialization, demonstrating that the randomized Kaczmarz method achieves a linear convergence rate for complex-valued signals, while the Gauss-Newton method attains a quadratic convergence rate without requiring sample splitting. We will then turn to algorithms initialized randomly. Through geometric landscape analysis of nonconvex optimization problems, we show that gradient descent with a random initial guess converges to the global solution with high probability.

主讲人简介:

黄猛,北京航空航天大学副教授,2019年博士毕业于中国科学院数学与系统科学研究院,之后在香港科技大学(2019-2021)从事博士后研究。主要研究相位恢复、压缩感知、盲去卷积等矩阵恢复问题。主持国家自然科学基金青年项目一项,作为北航负责人参与国家重点研发一项。中国运筹协会数学与智能分会青年理事。在 Appl. Comput. Harmon. Anal.、Math. Comput、Inverse Problems、SIAM J. Imaging Sci.、IEEE TIT、IEEE TSP、JFAA 等期刊发表论文15余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn