报告人:李猛
报告地点:腾讯会议ID: 229-880-742
报告时间:2025年11月28日星期五12:20-13:00
邀请人:数学与统计学院
报告摘要:
In this talk, we present superconvergence analysis of a backward differentiation formula (BDF) finite element method for the nonlinear Klein–Gordon–Schrödinger equation. A linearized fully discrete scheme is introduced to solve the nonlinear system. To overcome the constraint on the ratio between the spatial mesh size h and time step \tau , we employ a time-discrete system to separate the error into temporal and spatial parts. By carefully recombining key terms, we bound the temporal error in the L^2 -norm and the spatial error in the H^1 -norm. Using Ritz projection and interpolation techniques, we derive superconvergence of order \( O(h^2) \) in the H^1 -norm for the original variable. A numerical example is provided to validate the theoretical results.
主讲人简介:
李猛,郑州大学数学与统计学院副教授,主持国家自然科学基金、中国博士后等项目,研究方向为有限元方法及其在复杂工程问题中的应用。曾入选美国斯坦福大学发布的2024全球前2%科学家,获得河南省自然科学奖二等奖以及2023年河南省突出贡献奖。 在JCP,CMAME,IMA J Numer Anal等学术期刊发表多篇研究论文。