Tight High-Probability Bounds for Nonconvex Heavy-Tailed Scenario under Weaker Assumptions
报告人:刘园园
报告地点:觅讯会议ID:88187422(会议密码1127)
报告时间:2025年11月27日(星期四)09:00-10:00
邀请人:徐东坡
报告摘要:
Gradient clipping is increasingly important in centralized learning (CL) and federated learning (FL). Many works focus on its optimization properties under strong assumptions involving Gaussian noise and standard smoothness. However, practical machine learning tasks often only satisfy weaker conditions, such as heavy-tailed noise and (L0,L1)-smoothness. To bridge this gap, we propose a high-probability analysis for clipped Stochastic Gradient Descent (SGD) under these weaker assumptions. Our findings show a better convergence rate than existing ones can be achieved, and our high-probability analysis does not rely on the bounded gradient assumption. Moreover, we extend our analysis to FL, where a gap remains between expected and high-probability convergence, which the naive clipped SGD can not bridge. Thus, we design a new Federated Clipped Batched Gradient (FedCBG) algorithm, and prove the convergence and generalization bounds with high probability for the first time. Our analysis reveals the trade-offs between the optimization and generalization performance. Extensive experiments demonstrate that FedCBG can generalize better to unseen client distributions than state-of-the-art baselines.
主讲人简介:
刘园园,西安电子科技大学人工智能学院教授、硕士/博士研究生导师,智能信息处理研究所、智能感知与图像理解教育部重点实验室成员。2013年获得西安电子科技大学博士学位,并于2013年-2018年在香港中文大学从事博士后研究工作。目前的研究领域包括:机器学习、人工智能、深度学习等。分别以第一作者及通讯作者在IEEE TPAMI、TNNL、TIFS、TKDE、TCBY等顶级期刊和NeurIPS、ICML、AAAI、IJCAI、UAI、AISTATS等顶级会议上发表学术论文50余篇。以第二完成人授权发明专利两项。曾担任ICML、NeurIPS,ICLR、AAAI、IJCAI、NIPS、TIP、TNNL、IOT、Journal of Optimization等国际主流会议及期刊的程序委员会委员及客座编辑。2016年获得陕西省优秀博士学位论文奖,2018年入选华山菁英人才计划。