Equivariant Localization of K-Homological Euler Class for Almost Connected Lie Groups
报告人:刘泓志
报告地点:腾讯会议ID:409-449-475
报告时间:2025年11月27日星期四14:00-15:00
邀请人:李春光 安庆楠
报告摘要:
Using the Witten deformation and localization algebra techniques, we compute the G‑equivariant K‑homology class of the de Rham operator on a proper cocompact G‑spin manifold, where G is an almost connected Lie group. By applying a G‑invariant Morse–Bott perturbation, this class is localized near the zero set of the perturbation and can be identified explicitly with an element in the representation rings associated to some isotropy subgroups. The result yields an equivariant Poincare–Hopf formula and supplies concise tools for equivariant index computations. This is a joint work with Hang Wang, Zijing Wang and Shaocong Xiang.
主讲人简介:
刘泓志,上海财经大学数学学院副教授,从事非交换几何与K理论,尤其是高指标理论的研究工作。