当前位置: 首页 > 学术活动 > 正文
All unitary operators are tricycles, and most are bicycles
时间:2025年11月14日 23:34 点击数:

报告人:张远航

报告地点:人民大街校区数学与统计学院104

报告时间:2025年11月23日星期日9:00-10:00

邀请人:李春光 安庆楠

报告摘要:

Let H be a complex, separable Hilbert space (of finite or infinite dimension), and let U(H) denote the group of unitary operators on H. In the finite-dimensional setting, we prove that every unitary operator of determinant one can be expressed as the product of two operators, each unitarily equivalent to the n × n unitary cycle. In the infinite-dimensional setting, we prove that every unitary operator U is a product of three operators, each unitarily equivalent to the bilateral shift, and if the spectrum of U has nonzero Lebesgue measure, then U is a product of two operators, each unitarily equivalent to the bilateral shift. This work is joint with Laurent Marcoux, Matjaž Omladič and Heydar Radjavi.

主讲人简介:

张远航,吉林大学数学学院教授,研究方向为算子理论和算子代数,目前主要研究兴趣是线性算子的结构、单核C*-代数分类、套代数的可逆元群连通性问题。研究成果发表于J. Funct. Anal.、J. Noncommut. Geom.、J.Operator Theory、Math. Z.、Proc. Amer. Math. Soc.、Sci.China Math.、Studia Math.及被Canad. J. Math.录用。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn