报告人:丁立家
报告地点:腾讯会议ID:484-670-309,密码: 251113
报告时间:2025年11月13日星期四13:30-14:30
邀请人:倪嘉琪
报告摘要:
In this talk, we will discuss the $(p;l)$-essential normality of Hilbert quotient submodules over the strongly pseudoconvex finite manifold $(W,\Omega)$ satisfying Property (S). We establish a result that the holomorphic Sobolev quotient submodule $M_V^\bot$ is $(p;1)$-essentially normal whenever $p>\text{dim}\hspace{0.1em} (V\cap \Omega)^+.$ Moreover, we prove that $M_V^\bot$ is $(p;l)$-essentially normal whenever $p>\frac{1}{l+1}\hspace{0.1em}\text{dim}\hspace{0.1em} (V\cap \Omega)^+$ for integers $l\geq2$. As a consequence, we confirm the geometric Arveson-Douglas Conjecture on strongly pseudoconvex domains for subvarieties with isolated singularities when $l=1.$ If time permits, we will discuss the trace formula problems on quotient submodules.
主讲人简介:
丁立家,郑州大学数学与统计学院副研究员。研究方向为算子理论、多复变。主要研究成果发表在Adv. Math., Trans. Amer. Math. Soc., IEOT等数学刊物上。主持国家自然科学基金委项目及中国博士后科学基金委项目,入选中原基础研究领军人才计划、获批河南省优秀青年项目。