报告人:杨自豪
报告地点:腾讯会议ID:528-915-566
报告时间:2025年11月11日星期二21:30-22:10
邀请人:数学与统计学院
报告摘要:
In this talk, we propose a novel Phase Field Smoothing-Physics Informed Neural Network (PFS-PINN) to solve PDEs with discontinuous coefficients. This method overcomes low solution regularity by first using a neural network to solve a phase field model, creating a smoothed approximation of the original PDE. A mixed PINN model then solves this smoothed problem, using the solution and its first-order derivatives as outputs to avoid computationally expensive second-order derivatives in the loss function. We also employ adaptive sampling to enhance performance. Numerical experiments on elliptic equations with complex microstructures confirm the accuracy and effectiveness of the PFS-PINN approach, demonstrating its potential for broader applications.
主讲人简介:
杨自豪,西北工业大学数学与统计学院教授,博士生导师。主持国家自然科学基金、中国科学院战略性科技先导专项课题、国家重点研发计划子课题等项目。研究方向为材料科学中的多尺度分析、不确定性量化与智能计算,近年来重点关注航空轮胎和金属增材制造中的科学计算问题,独立研发了具有完全自主知识产权的航空轮胎疲劳寿命分析软件CTireLife,获得陕西省自然科学二等奖,陕西省振动工程学会科学技术奖一等奖。