报告人:牛春艳
报告地点:腾讯会议ID:528-915-566
报告时间:2025年11月11日星期二20:00-20:40
邀请人:数学与统计学院
报告摘要:
In this talk, we present two key contributions to the theory and practice of the AMLI-cycle multigrid method. First, we revisit the classical Chebyshev-accelerated AMLI-cycle. By establishing a new theory for its uniform convergence based solely on the two-grid convergence rate, we eliminate the costly requirement of estimating extreme eigenvalues on all coarse levels. This significantly simplifies implementation. Second, and more importantly, we introduce a novel momentum-accelerated AMLI-cycle. This new method uses polynomials derived from momentum acceleration techniques, ensuring a uniformly bounded condition number without needing anyeigenvalue or two-grid rate estimations. This makes its implementation as straightforward as standard V- or W-cycles. We prove that the quadratic momentum-accelerated AMLI-cycle is asymptotically optimal, matching the performance of its Chebyshev counterpart. Numerical results across various problems confirm the robustness and efficiency of our new approach, demonstrating performance on par with the Chebyshev-based method.
主讲人简介:
牛春艳,郑州大学数学与统计学院副教授。承担教育部产学合作协同育人项目以及中国博士后基金。研究方向为偏微分方程数值方法、大型稀疏线性系统的快速求解算法及优化、机器学习及其在盾构智能掘进中的应用, 在Computational Geosciences、CNSNS等知名学术期刊发表多篇研究论文。