当前位置: 首页 > 学术活动 > 正文
Probabilistic photon distribution guided 3D Transformer for single photon computational imaging
时间:2025年11月08日 10:53 点击数:

报告人:高绍兵

报告地点:腾讯会议ID:427-506-499

报告时间:2025年11月12日星期三9:00-10:00

邀请人:刘俊

报告摘要:

Single-photon imaging (SPI), with its singlephoton sensitivity, enables detection and imaging at long distances and extremely low-flux, offering significant potential for applications. This work presents a novel multi-branch architecture for SPI that leverages the aggregate statistics of photon detection time over N illumination periods. Our analysis reveals a reflectivity-dependent intensity distribution for normalized background noise photon histogram, motivating a dual-branch decoder that jointly reconstructs depth and reflectivity. We introduce a data-driven approach to learn the censoring mechanism inherent in the mixture probability density distribution of photon detection times. This allows us to estimate noise photon level implicitly encoded within the normalized histogram by leveraging depth information. This, in turn, facilitates effective censoring of the processed histogram for improved reflectance estimation. To further exploit the significant spatiotemporal correlations present in 3D single-photon data, we extend the architecture to a three-branch encoder. A novel block-based 3D transformer branch captures global spatiotemporal dependencies within the photon cube, while a parallel branch employs dilated convolutions for local feature extraction. A third branch captures residual information, and the outputs of all three branches are fused for the final reconstruction. Extensive experiments on simulated, public, and newly acquired multiexposure datasets demonstrate state-of-the-art performance across a range of signal-to-background ratios. Our model significantly improves the accuracy and robustness of reflectivity and depth map estimation in complex environments.

主讲人简介:

高绍兵,四川大学计算机学院副教授/博士生导师。电子科技大学硕士(2013)、英国伦敦大学学院博士联合培养(2015)、电子科技大学博士(2017),四川大学华西医学院博士后(2018-2021)。主要研究类脑智能技术及其在图像数据受限下的多源图像智能融合和分析研究,应用于高空高速空基平台下的小样本、不确定、非完整图像信息的智能分析和处理。发表论文30+篇,IEEE TPAMI等汇刊和CCF-A类会议等10+篇。国家发明专利20余项、计算机软著2项;主持国家自然科学基金项目2项,国家重点研发计划子课题1项。获得“中国电子教育学会优秀博士论文”提名奖,2020年吴文俊人工智能自然科学奖(序3),2024年中国人工智能学会教学成果激励计划二等奖(序2)。担任国际期刊《Frontiers in Computational Neuroscience》(IF=3.2) 的Editor,SCI期刊Biomimetics (IF=4.5) 的客座编辑。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn