Let G be a discrete group. Then the following is equivalent:
(1) G is amenable;
(2) the reduced group C*-algebra is nuclear;
(3) the group von-Neumann algebra L(G) is semidiscrete.
Let p>1. G. An, J.-J. Lee and Z.-J. Ruan introduced the p-nuclearity for Lp-operator algebras. They show that the reduced group Lp-operator algebra is p-nuclear and the p-pseudomeasure algebra is p-semidiscrete if G is amenable. In this talk, we show that the following are equivalent:
(4) G is amenable;
(5) the reduced group Lp-operator algebra is p-nuclear;
(6) the p-pseudomeasure algebra is p-semidiscrete;
This answers an open problem raised by N. C. Phillips.
汪镇,杭州师范大学副教授。2018年博士毕业于华东师范大学数学科学学院,2022年至2024年在吉林大学数学学院从事博士后研究。主持国家自然科学基金青年项目、中国博士后基金面上项目。主要从事Lp-算子代数的研究,相关成果发表于Israel J. Math.(两篇)、Math. Z.等杂志