当前位置: 首页 > 学术活动 > 正文
High-Dimensional Precision Matrix Quadratic Forms: Estimation Framework for p > n
时间:2025年11月04日 08:15 点击数:

报告人:洪世哲

报告地点:人民大街校区数学与统计学院403教室

报告时间:2025年11月4日(星期二)10:45-11:45

邀请人:胡江

报告摘要:

We propose a novel estimation framework for quadratic functionals of precision matrices in high-dimensional settings, particularly in regimes where the feature dimension p exceeds the sample size n. Traditional moment-based estimators with bias correction remain consistent when p<n. However, they break down entirely once p>n, highlighting a fundamental distinction between the two regimes due to rank deficiency and high-dimensional complexity. Our approach resolves these issues by combining a spectral-moment representation with constrained optimization, resulting in consistent estimation under mild moment conditions. The proposed framework provides a unified approach for inference on a broad class of high-dimensional statistical measures. We illustrate its utility through two representative examples: the optimal Sharpe ratio in portfolio optimization and the multiple correlation coefficient in regression analysis.

主讲人简介:

洪世哲,上海财经大学统计与数据科学学院博士生。主要研究方向为随机矩阵理论和高维统计问题。博士期间研究成果发表于Journal of the American Statistical Association, Statistica Sinica等国际权威统计学期刊。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn