当前位置: 首页 > 学术活动 > 正文
Geometric Banach property (T) for metric spaces and the coarse Baum-Connes conjecture
时间:2025年10月30日 14:21 点击数:

报告人:王勤

报告地点:腾讯会议ID:795-223-062

报告时间:2025年11月04日星期二13:30-14:30

邀请人:李春光 安庆楠

报告摘要:

We introduce the notion of geometric Banach property (T) for metric spaces, which simultaneously generalizes both Banach property (T) for groups and geometric property (T) for metric spaces. This generalization is achieved through representations of the uniform Roe algebra of a metric space on various Banach spaces, including Lp-spaces and uniformly convex Banach spaces, among others. We demonstrate that geometric Banach property (T) is a coarse invariant and establish several equivalent characterizations, including one based on the existence of Kazhdan projections in Banach-Roe algebras. Our investigation is motivated by extending beyond Hilbert space geometry as the model space framework, aiming to deepen the understanding of coarse embeddings and the coarse Baum-Connes conjecture for metric spaces in the context of Banach space geometry. This is joint work with Liang Guo.

主讲人简介:

王勤,华东师范大学数学科学学院算子代数研究中心教授、博导,主要致力于算子代数、粗几何上的高指标理论的研究。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn