This report presents a series of studies related to Hidden Markov Model (HMM), focusing on three major methodological directions: scalable parameter estimation, flexible state sequence recognition, and the learning performance of classification models. First, to address the challenge of high-dimensional hidden states and large-scale datasets, we propose a maximum entropy estimation method based on two-dimensional empirical distributions, which substantially reduces the computational complexity of traditional likelihood-based estimation methods such as the Baum–Welch EM algorithm. Second, to overcome the rigidity of the Viterbi algorithm in state identification, we develop a dynamic programming decoding algorithm grounded in the Markov loss function, allowing more flexible handling of different transition structures through adjustable loss weighting. Furthermore, to enhance the learning performance of classification models, we establish generalization error bounds for Markov sampling and propose a unified ueMC framework that supports both linear and nonlinear models, enabling efficient sampling and training in complex data environments.
胡淑兰,中南财经政法大学教授、博士生导师,数智发展研究中心主任,数字技术与现代金融学科创新引智基地研究员,首届文澜青年学者,中国现场统计学会资源与环境分会理事,大数据分会理事,湖北省现场统计学会理事。全国数据标准委员会成员单位代表、湖北省第一届数据标准化技术委员。建行学院第二批产教融合实训基地“双师型”导师。曾挂职于建设银行湖北省分行金融科技部、财务会计部(数字化办)副总经理。研究方向:大数据随机算法理论及其应用;金融风险建模、经济计量学;数据流通开发利用、数据资产/产品评估模型、数据标准。主持完成国家自然科学基金、国家社会科学基金等。主持完成中央高校、研究生案例库项目、精品课程项目、全英文课程建设项目、MBA 案例库、企业横向课题等二十多项课题。在Mathematics of Computation,Bernoulli,Statistica Sinica, Finance Research Letters,International Journal for Uncertainty Quantification,Stochastic Processes and their Applications,数学学报,应用数学学报,数理统计与管理,统计与信息论坛等 国内外知名期刊发表论文30多篇,出版全国“十四五”规划教材1部、著作1部,指导获国家级各类竞赛奖项30余项,参与多项数据资源相关标准制定。