报告人:李猛
报告地点:腾讯会议ID:884-770-921
报告时间:2025年10月25日星期六20:00-20:45
邀请人:数学与统计学院
报告摘要:
In this talk, we present a novel convergence analysis for the numerical approximation of axisymmetric mean curvature flows, covering both isotropic and anisotropic cases for genus-1 surfaces. Our work directly addresses a key limitation in the analysis by Barrett et al. (2021), namely a restrictive time-step condition. We introduce a new time-space error splitting technique that successfully removes this constraint for the isotropic flow. Furthermore, we demonstrate that this technique provides a crucial tool for the more complex anisotropic case. It helps overcome a fundamental obstacle: the inability to guarantee the boundedness of the solution's gradient, which is essential for the convergence analysis. Our unified framework shows that the analytical strategy developed for the isotropic case is powerfully applicable to the anisotropic setting, ensuring the required properties for convergence. The talk will conclude with numerical experiments that validate our theoretical findings and illustrate the dynamics of the flow.
主讲人简介:
李猛,郑州大学数学与统计学院副教授,主持国家自然科学基金、中国博士后等项目,研究方向为有限元方法及其在复杂工程问题中的应用。曾入选美国斯坦福大学发布的2024全球前2%科学家,获得河南省自然科学奖二等奖以及2023年河南省突出贡献奖。 在JCP,CMAME, IMA J Numer Anal等学术期刊发表多篇研究论文。