In this talk, we discuss the construction and analysis of structure-preserving Galerkin methods for computing the dynamics of rotating Bose-Einstein condensate based on the Gross-Pitaevskii equation with angular momentum rotation. Due to the presence of the rotation term, constructing FMEs that preserve both mass and energy remains an unresolved issue, particularly in the context of nonconforming FEMs. Furthermore, in comparison to existing works, we introduce a comprehensive convergence analysis, offering a thorough demonstration of the methods’optimal and high-order convergence properties. Finally, we show numerical results to check the theoretical analysis of the structure-preserving numerical method for rotating BEC.
李猛,郑州大学数学与统计学院副教授,主持国家自然科学基金、中国博士后等项目,研究方向为有限元方法及其在复杂工程问题中的应用。曾入选美国斯坦福大学发布的2024全球前2%科学家,获得河南省自然科学奖二等奖以及2023年河南省突出贡献奖。 在JCP,CMAME, IMA J Numer Anal等学术期刊发表多篇研究论文。