报告人:张思亮
报告地点:人民大街校区数学与统计学院415教室
报告时间:2025年10月14日星期二13:30-14:30
邀请人:孟祥斌
报告摘要:
Network models are increasingly vital in psychometrics for analyzing relational data, which are often accompanied by high-dimensional node attributes. Joint latent space models (JLSM) provide an elegant framework for integrating these data sources by assuming a shared underlying latent representation; however, a persistent methodological challenge is determining the dimension of the latent space, as existing methods typically require pre-specification or rely on computationally intensive post-hoc procedures. We develop a novel Bayesian joint latent space model that incorporates a cumulative ordered spike-and-slab (COSS) prior. This approach enables the latent dimension to be inferred automatically and simultaneously with all model parameters. We develop an efficient Markov Chain Monte Carlo (MCMC) algorithm for posterior computation. Theoretically, we establish that the posterior distribution concentrates on the true latent dimension and that parameter estimates achieve Hellinger consistency at a near-optimal rate that adapts to the unknown dimensionality. Through extensive simulations and two real-data applications, we demonstrate the method's superior performance in both dimension recovery and parameter estimation. Our work offers a principled, computationally efficient, and theoretically grounded solution for adaptive dimension selection in psychometric network models.
主讲人简介:
张思亮现为华东师范大学统计学院副教授。复旦大学上海数学中心与美国哥伦比亚大学统计系联合培养博士,英国伦敦政治经济学院(LSE)统计系博后。主要研究方向为潜变量建模与统计计算、心理测量、多元数据分析和经验贝叶斯等。在JASA, Annals of Applied Statistics, Psychometrika, Sinica等统计学与心理统计顶级期刊发表论文10余篇。主持上海市科委扬帆计划、国自然青年基金各一项。曾获上海市领军人才(海外)、Psychometrika Best Reviewer Award等奖项。担任心理统计期刊British Journal of Mathematical and Statistical Psychology编委。