当前位置: 首页 > 学术活动 > 正文
Online survival analysis with quantile regression
时间:2025年09月30日 12:09 点击数:

报告人:李树威

报告地点:惟真楼523

报告时间:2025年10月09日星期四10:00-11:00

邀请人:葛磊

报告摘要:

We propose an online inference method for censored quantile regression with streaming data sets. A key strategy is to approximate the martingale-based unsmooth objective function with a quadratic loss function involving a well-justified second-order expansion. This enables us to derive a new online convex function based on the current data batch and summary statistics of historical data, thereby achieving online updating and occupying low storage space. To estimate the regression parameters, we design a novel majorize-minimize algorithm by reasonably constructing a quadratic surrogate objective function, which renders a closed-form parameter update and thus reduces the computational burden notably. Theoretically, compared to the oracle estimators derived from analyzing the entire raw data once, we posit a weaker assumption on the quantile grid size and show that the proposed online estimators can maintain the same convergence rate and statistical efficiency. Simulation studies and an application demonstrate the satisfactory empirical performance and practical utilities of the proposed online method.

主讲人简介:

李树威, 统计学博士, 现任广州大学经济与统计学院教授、统计系主任兼支部书记。2017年6月博士毕业于吉林大学统计系。主要研究方向为生物统计、大数据处理及机器学习,在Biometrika、 Biometrics、Statistics in Medicine、Statistica Sinica、JCGS等期刊上发表论文30余篇。主持国家自然科学基金面上项目、国家自然科学基金青年项目等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn