当前位置: 首页 > 学术活动 > 正文
Byzantine-robust Distributed Learning under Heterogeneity via Convex Hull Search
时间:2025年08月27日 13:12 点击数:

报告人:陈钊

报告地点:人民大街校区惟真楼523报告厅

报告时间:2025年08月27日(星期三)13:20-14:20

邀请人:郑术蓉

报告摘要:

In modern massive data modelling, distributed learning plays a critical role in enhance scalability, efficiency and privacy protection. Heterogeneity and robustness of a distributed learning algorithm are key aspects related to the accuracy and reliability of learning result. In this work, under the common framework of statistical learning, we propose the convex hull search technique and algorithm derived from it. The proposed algorithm has four main advantages: fast convergence, high accuracy, tuning friendness and Byzantine robust. The corresponding convergence and asymptotic normality result for our algorithm are established which show its adaptability on data heterogeneity. Examples of the application of our algorithms has been given on regression and clustering tasks through synthetic data. Furthermore, a real energy load data is implemented for Gaussian process regression hyperparameters optimization. Existing numerical result confirm superiority and exhibit wide applicability of our algorithms.

主讲人简介:

陈钊,现任复旦大学大数据学院教授、副院长。先后在美国普林斯顿大学从事博士后研究工作,在美国宾夕法尼亚州立大学担任研究型助理教授,2018年加入复旦大学大数据学院。担任计量经济学国际期刊Journal of Business and Economic Statistics 编委(Associate Editor)。主要研究方向大数据分析建模,高维统计推断,分布式统计推断,非线性时间序列,以及统计方法在建筑能源,生物信息,癌症研究等领域的应用。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237