We consider the parabolic Anderson model in the Stratonovich integral, with the time-$L_{loc}^{p}(\mathbb{R})$-covariance and space-$\alpha$-homogeneous Gaussian fields. We study the left-tailed probability of the solution and its density, inspired by the work of [Hu, L\^{e}, AIHP, 2022]. When $u_0$ is a nonnegative measure, the rough estimates of their upper bounds are obtained jointly owning the exponent of rate $2$. When $u_0$ is a bounded function satisfying that $\inf_{x\in\mathbb{R}^d}u_0(x)>0$, the rates of the upper bounds are improved, more precisely, the exponent of rate is $2+\frac{\alpha}{2}(1-\frac{\alpha}{4})$ for $\alpha\in(0,2)$ in the time-independent case; it is larger than $2$ for $\alpha\in(0,6-2\sqrt{5})$ in the time-dependent case.
吕阳阳,闽南师范大学副教授,硕士生导师。2016年毕业于东北师范大学数学与统计学院概率论与数理统计专业,获理学硕士学位;2020年毕业于吉林大学数学学院概率论与数理统计专业,获理学博士学位。主要从事随机偏微分方程、随机过程、随机分析、大偏差极限理论等方面研究。论文发表在《Stochastic Processes and their Applications》、《Acta Mathematica Scientia(English series)》、《Journal of Mathematical Physics》、《Statistics and Probability Letters》等杂志上。主持项目包含国家自然科学基金(青年项目)、福建省自然科学基金(青年项目)等。