当前位置: 首页 > 学术活动 > 正文
Periodic solutions of asymptotic non-resonant wave equation with variable coefficients
时间:2025年08月07日 15:39 点击数:

报告人:魏辉

报告地点:数学与统计学院617

报告时间:2025年08月08星期五09:30-10:30

邀请人:冀书关

报告摘要:

We consider the periodic solutions   of a semi-linear variable coefficient wave equation arising from the forced   vibrations of a nonhomogeneous string and the propagation of seismic waves in   non-isotropic media. The variable coefficient characterizes the inhomogeneity   of media and its presence usually leads to the destruction of the compactness   of the inverse of the linear wave operator with periodic-Dirichlet boundary   conditions on its range. In the pioneering work of Barbu and Pavel (1997),   they gave the existence and regularity of the periodic solution for   Lipschitz, non-resonant and monotone nonlinearity under the strong convexity   assumption on the coefficient. In this work, by developing the invariant   subspace method and using the complete reduction technique and Leray-Schauder   theory, we obtain the existence of periodic solutions for such a problem when   the nonlinear term satisfies the asymptotic non-resonance conditions. Our   result needs neither requirements on the coefficient except the natural   positivity assumption nor the monotonicity assumption on the nonlinearity.

主讲人简介:

魏辉,洛阳师范学院数学科学学院副教授,主要从事微分方程与动力系统研究,于《Math. Ann.》和《Sci. China Math.》等学术刊物发表论文十余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237

师德师风监督举报电话、邮箱:85099577 sxdw@nenu.edu.cn