当前位置: 首页 > 学术活动 > 正文
Model-free Variable Selection in High Dimension via Constrained Kernel Regression
时间:2025年07月27日 07:41 点击数:

报告人:李长城

报告地点:数学与统计学院二楼会议室

报告时间:2025年07月27日星期日10:20-11:00

邀请人:冀书关

报告摘要:

We propose a model-free variable selection approach, i.e., constrained kernel regression (CONKER). Instead of relying on model-based loss functions, the proposed CONKER approach is developed based on the conditional independence relationship measured by the conditional distance covariance/correlation. The conditional distance covariance/correlation is further approximated using the kernel density estimation method. The CONKER coefficient vector is then defined to be the vector satisfying the approximated conditional independence constraints. The proposed approach provides a solution path by varying the tuning parameter in the conditional independence constraints. We prove that the proposed CONKER approach can consistently identify the true important predictor set under high-dimensional model-free settings with appropriate tuning parameters. We further develop a data-driven approach to select the tuning parameter of the proposed approach. The advantage of the proposed procedure is further shown by various numerical studies. More specifically, the proposed model-free procedure surpasses the existing model-based methods in the presence of model misspecification while outperforming or at least equating to the existing ones with correctly specified models.

主讲人简介:

李长城,大连理工大学数学科学学院教授、博士生导师,入选小米青年学者、辽宁省及国家级高层次青年人才项目,研究兴趣主要为高维统计、高维因果推断及因果图学习。高维统计及因果推断是目前统计领域的热点,在智能决策、生物医学等诸多领域里都有非常重要的应用。在高维统计的理论、应用以及计算方面进行了一系列创新性的研究,在国际顶尖学术期刊Journal of American Statistical Association、Annals of Statistics、Journal of Econometrics、Annals of Applied Statistics等发表文章多篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237