当前位置: 首页 > 学术活动 > 正文
Recent Development about Perturbation Analysis for Conic Optimization Problems
时间:2019年07月10日 14:41 点击数:

报告人:张立卫

报告地点:数学与统计学院104室

报告时间:2019年07月14日星期日10:30-11:30

邀请人:刁怀安

报告摘要:

This report first summarizes the works about nonlinear conic optimization problems, especially about strong regularity and isolated calmness for nonlinear programming, second-order conic optimization and semidefinite programming. After that it is devoted to studying the robust isolated calmness of the Karush-Kuhn-Tucker (KKT) solution mapping for a large class of interesting conic programming problems (including most commonly known ones arising from applications) at a locally optimal solution. Under the Robinson constraint qualification, we show that the KKT solution mapping is robustly isolated calm if and only if both the strict Robinson constraint qualification and the second order sufficient condition hold. This implies, among others, that at a locally optimal solution the constraint non-degeneracy and the second order sufficient condition are both needed for the KKT solution mapping to have the Aubin property.

主讲人简介:

张立卫教授,大连理工大学数学科学学院运筹学与控制论业博士生指导教师,金融数学与保险精算专业博士生指导教师。他于1989年,1992年,1998年分别在大连理工大学获得理学学士,硕士,博士学位,1999-2001在中科院计算数学所从事博士后工作。目前的研究兴趣是“矩阵优化”,“随机规划”与“PDE约束控制与优化”。他完成和主持自然科学基金面上基金多项,重点基金子课题两项。发表SCI检索论文100多篇,在国际顶级期刊Math. Programming, Operations Research, SIAM J. Optimization, Mathematics of Operations Research, Mathematics of Computation 发表论文10余篇。现任中国运筹学会常务理事,中国运筹学会数学规划分会副理事长,中国运筹学会金融工程与金融风险管理分会常务理事,《JAPOR》和《运筹学学报》编委。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号|邮编:130024|电话:0431-85099589|传真:0431-85098237