
Chapter 6. Cluster Sampling

1 Definition

Definition: A cluster sample is a probability sample in which each sampling unit is a
collection, or cluster of elements.

2 Why cluster sampling?

To illustrate, suppose we wish to estimate the average income per household in a large
city. How should we choose the sample? If we use the simple random sampling, we will
need a frame listing all households in the city, and this frame may be very costly or
impossible to obtain. We can not avoid this problem by using stratified random sampling
because a frame is still required for each stratum in the population. Rather than draw a
simple random sample of elements, we could divide the city into regions such as blocks
or clusters of elements and select a simple random sample of blocks form the population.
This task is easily accomplished by using a frame that lists all city blocks. Then the
income of every household within each sampled block could be measured.

To illustrate the second reason, suppose that a list of households in the city is available.
We could select a s.r.s. of households, which probably would be scattered throughout the
city. The cost of conduct interviews in the scattered households would be large owing to
the interviewer travel time and other related expenses. Stratified random sampling could
lower these expenses, but using cluster sampling is a more effective method of reducing
travel costs. Elements within a cluster should be close to each other geographically, and
hence travel expenses should be reduced. Obviously, travel within a city block would be
minimal when the travel associated with s.r.s. of households within the city.

To summarize,
1. A good frame of population elements is not available or costly to obtain; but a list of
clusters is available.
2. It saves cost when distance separating the elements increases.

3 How to draw a cluster sample

Suppose that our population consists of N clusters of elements

Cluster 1: u11, · · · , u1M1 (with subtotal u1 =
∑M1

j=1 u1j)
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Cluster 2: u21, · · · , u2M2 . (with subtotal u2 =
∑M2

j=1 u2j)

............................

Cluster N: uN1, · · · , uNMN
. (with subtotal uN =

∑MN
j=1 uNj)

where

N = the number of clusters in the population

Mi = the number of elements in cluster i, i = 1, 2, · · · , N

M =
N∑
i=1

Mi = the number of elements in the population

M = M/N = the average cluster size for the population

ui =
Mi∑
j=1

uij = the subtotal for the ith cluster.

Note that the population mean can be written as

µ =

∑N
i=1

∑Mi
j=1 uij∑N

i=1 Mi

=

∑N
i=1 ui

M
=

∑N
i=1 ui/N

M/N
=

ū

M̄
(a population ratio)(3.1)

Cluster sampling is simple random sampling from the above N clusters with each
element being a cluster. We shall write the cluster sample as

Cluster 1: y11, · · · , y1m1 . (with subtotal y1 =
∑m1

j=1 y1j)

Cluster 2: y21, · · · , y2m2 . (with subtotal y2 =
∑m2

j=1 y2j)

............................

Cluster n: yn1, · · · , ynmn . (with subtotal yn =
∑mn

j=1 ynj)

where

n = the number of clusters selected in a simple random sample

mi = the number of elements in cluster i, i = 1, 2, · · · , n

m =
n∑

i=1

mi = the number of elements in the sample

m =
m

n
=

1

n

n∑
i=1

mi = the average cluster size for the sample

yi =
mi∑
j=1

yij = the total of all observations in cluster i, i = 1, 2, · · · , n

4 Estimation of population mean

Note that µ in (3.1) is a ratio, which can be estimated by a ratio estimator.
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1. The estimator of the population mean µ is

µ̂c =
y

m
.

Notice mi plays the role of xi in the ratio estimation in the last chapter.

Example A sociologist wants to estimate the per-capita income in a certain small

city. No list of resident adults is available. How should he design the sample survey?

Solution Cluster sampling seems to be logical for the survey design because no lists

of elements are available. The city is marked off into rectangular blocks, except two

industrial areas and three parks that contain only a few houses. The sociologist

decides that each of the city blocks will be considered one cluster, the two industrial

areas will be considered one cluster, and finally, the three parks will be considered

one cluster.

The clusters are numbered on a city map, with the numbers from 1 to 415. The

experimenter has enough time and money to sample n = 25 clusters and to interview

every household within each cluster. Hence 25 random numbers between 1 and 415

are selected from random number tables, and the clusters having these numbers are

marked on the map. Interviews are then assigned to each of the sampled clusters.

If we use stratified sampling, then we have 415 subpopulation. And from each

subpopulation, we get a s.r.s.

2. The variance of µ̂c is given by

V ar(µ̂c) ≈ 1

M
2

σ2
y−µm

n

(
N − n

N − 1

)
,

where

σ2
y−µm ≡ 1

N

N∑
i=1

(ui − µMi)
2

(since P ((y,m) = (ui,Mi)) = 1/N, i = 1, · · · , N)

=
1

N

N∑
i=1

(ui − ū− µ(Mi − M̄))2

=
1

N

N∑
i=1

(
(ui − ū)2 − 2µ(ui − ū)(Mi − M̄) + µ2(Mi − M̄)2

)
=

(
σ2
y + µ2σ2

m − 2µρσmσy

)
.
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where

ρ = corr(y1,m1) =
1
N

∑N
i=1(ui − ū)(Mi − M̄)√

1
N

∑N
i=1(ui − ū)2

√
1
N

∑N
i=1(Mi − M̄)2

and σ2
m = 1

N

∑N
i=1(Mi − M̄)2, is the population variance of mi, i = 1, · · · , N .

3. An estimate of Var(µ̂c) is given by

V̂ ar(µ̂c) =
1

M
2

s2y−µ̂cm

n
(1− f) if M is known

≈ 1

m2

s2y−µ̂cm

n
(1− f) if M is unknown

where

s2y−µ̂cm =
1

n− 1

n∑
i=1

(yi − µ̂cmi)
2

=
1

n− 1

(
n∑

i=1

y2i + µ̂2
c

n∑
i=1

m2
i − 2µ̂c

n∑
i=1

miyi

)
= s2y + µ̂2

cs
2
m − 2µ̂cρ̂smsy,

with

s2m =
1

n− 1

n∑
i=1

(mi−m)2, s2y =
1

n− 1

n∑
i=1

(yi−y)2, ρ̂ =
1

n− 1

n∑
i=1

(mi−m)(yi−y)/smsy.

4. A (1− α) C.I. for µ is

µ̂c ∓ zα/2

√
V̂ ar(µ̂c).

5. The sample size n required to estimate µ with error bound B with probability 1−α

is

n ≈
Nσ2

y−µm

ND + σ2
y−µm

, where D =
B2M

2

z2α/2
or D =

B2m2

z2α/2
.

(In practice, σ2
y−µm may need to be estimated by s2y−µcm

from a pilot study.)

The derivation is sketched as follows,

From

B = zα/2
√
V ar(µ̂c) = zα/2

√√√√ 1

M
2

σ2
y−µm

n

(
N − n

N − 1

)
we have

D =
σ2
y−µm

N − 1

(
N − n

n

)
,
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from which we have

n ≈
Nσ2

y−µm

(N − 1)D + σ2
y−µm

≈
Nσ2

y−µm

ND + σ2
y−µm

.

You may also use V̂ ar(µ̂c).

Example A sociologist wants to estimate the per-capita income in a certain small city.

Interviews are conducted in each of the 25 blocks. The data on incomes are presented in

the table. Use the data to estimate the per-capita income in the city and place a bound

on the error of estimation.

Cluster Number of residents Total income per cluster

1 8 $ 96,000

2 12 121,000

3 4 42,000

4 5 65,000

5 6 52,000

6 6 40,000

7 7 75,000

8 5 65,000

9 8 45,000

10 3 50,000

11 2 85,000

12 6 43,000

13 5 54,000

14 10 49,000

15 9 53,000

16 3 50,000

17 6 32,000

18 5 22,000

19 5 45,000

20 4 37,000

21 6 51,000

22 8 30,000

23 7 39,000

24 3 47,000

25 8 41,000

5



Solution

µ̂c =

∑25
i=1 yi∑25
i=1mi

=
1, 329, 000

151
= 8801

V̂ ar(µ̂c) =
N − n

Nnm2

∑25
i=1(yi − µ̂cmi)

2

n− 1

=
415− 25

415× 25× 6.042
× 251892 = 653785

The error bound B = 2
√
V̂ ar(µ̂c) = 1617, which is rather large. It could be reduced by

sampling more clusters and consequently, increasing the sample size.

5 Estimation of population total

1. The estimator of the population total τ is

τ̂c = M

∑n
i=1 yi∑n
i=1 mi

= Mµ̂c.

2. The variance of τ̂c is given by

V ar(τ̂c) = M2V ar(µ̂c) ≈ M2 1

M
2

σ2
y−µm

n

(
N − n

N − 1

)
= N2σ

2
y−µm

n

(
N − n

N − 1

)
.

3. An estimate of Var(τ̂c) is given by

V̂ ar(τ̂c) = N2 s
2
y−µ̂cm

n
(1− f).

4. A (1− α) C.I. for τ is

τ̂c ∓ zα/2

√
V̂ ar(τ̂c).

5. The sample size n required to estimate τ with error bound B with probability 1−α

is

n ≈
Nσ2

y−µm

ND + σ2
y−µm

, where D =
B2

N2z2α/2
.

Example Use the data in the last example to estimate the total income of all residents

of the city and place a bound on the error of estimation. There are 2500 residents in the

city.

Solution The sample mean µ̂c = 8801 from the last example. Thus

τ̂ = Mµ̂c = 2500× 8801 = 22, 002, 500
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The error bound is

B = 2
√
M2V ar(µ̂c) = 2

√
25002 × 653, 785 = 4042848

So the error bound is large, it could be reduced by increasing the sample size.

7



6 Comparison to simple random sampling under equal

cluster sizes

Theorem 6.1 If all cluster sizes are equal, then

R̂E

(
µ̂c

µ̂srs

)
> 1 iff MSW > MSB.

That is, cluster sampling is more efficient than s.r.s. if the clusters are similar and

the variations within each cluster is big. (MSW=mean square error within the cluster,

MSB=mean square error between the clusters)

Proof. Since all cluster sizes are equal, we have

M1 = · · · = MN = M, m1 = · · · = mn = m, M = m.

Our cluster sample is

Cluster 1: y11, · · · , y1m1 , y1 =
∑m

j=1 y1j/m1 = y1/m

Cluster 2: y21, · · · , y2m2 y2 =
∑m

j=1 y2j/m2 = y2/m

............................

Cluster n: yn1, · · · , ynmn yn =
∑m

j=1 ynj/mn = yn/m

Define

SST =
n∑

i=1

m∑
j=1

(yij − µ̂c)
2, MST = SST/(mn− 1),

(one constraint
n∑

i=1

m∑
j=1

yij/(nm) = µ̂c)

SSW =
n∑

i=1

m∑
j=1

(yij − yi)
2, MSW = SSW/(mn− n),

(n constraints
m∑
j=1

yij/m = yi)

SSB =
n∑

i=1

m∑
j=1

(yi − µ̂c)
2, MSB = SSB/(n− 1).

=
n∑

i=1

m(yi − µ̂c)
2

By the ANOVA decomposition (which we met in systematic sampling), we have

SST = SSW + SSB.
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For cluster sampling, we have

µ̂c =

∑n
i=1 yi
mn

=
y

m
,

s2y−µ̂cm =
1

n− 1

n∑
i=1

(yi − µ̂cmi)
2 =

1

n− 1

n∑
i=1

(yi − y)2,

V̂ ar(µ̂c) =
1

m2

1

n
s2y−µ̂cm(1− f)

=
1

m2n

[ 1

n− 1

n∑
i=1

(yi − y)2
]
(1− f)

=
1

m2n

[ 1

n− 1

n∑
i=1

(m yi −m µ̂c)
2
]
(1− f)

=
1

mn(n− 1)
SSB(1− f)

=
1

mn
MSB(1− f).

If we regard the cluster sample as a simple random sample, i.e. y11, · · · , y1m1 , y21, · · · , y2m2 ,

· · ·, yn1, · · · , ynmn is a s.r.s., we have µ̂c = µ̂srs, and

V̂ ar(µ̂srs) =
1

mn

[ 1

mn− 1

n∑
i=1

m̄∑
j=1

(yij − µ̂c)
2
]
(1− f) =

1

mn
MST (1− f).

Therefore,

R̂E

(
µ̂c

µ̂srs

)
=

V̂ ar(µ̂srs)

V̂ ar(µ̂c)
=

MST

MSB

=
(SSW + SSB)/(mn− 1)

MSB

=
[n(m− 1)MSW + (n− 1)MSB]

(mn− 1)MSB

≈ [n(m− 1)MSW + nMSB]

mnMSB

=
(m− 1)MSW +MSB

mMSB

Therefore,

R̂E

(
µ̂c

µ̂srs

)
> 1 iff (m− 1)MSW +MSB > mMSB

iff (m− 1)MSW > (m− 1)MSB

iff MSW > MSB.
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That is, cluster sampling is more efficient than s.r.s. if the clusters are similar and the

variations within each cluster is big.

Remark: From the above theorem, we see that cluster sampling and the stratified random
sampling are quite opposite sampling schemes. Which one we pick in practice depends on the
variations amongst subgroups (either clusters or strata) and the variations between subgroups.
The following is a guideline.

(a). Use the stratified random sampling if the subgroups are quite different but
within each subgroup, the elments are similar (or homogeneous). (i.e. MSB >
MSW ).

(b). Use the cluster sampling if the subgroups are similar but within each subgroup,
the elments are quite different. (i.e. MSB < MSW ).

7 A special case

Suppose M1 = M2 = · · · = MN = M̄ . Then m1 = m2 = · · · = mn = M̄ , and

µ̂c = n−1
n∑

i=1

ȳi.

Let us calculate Eµ̂c and V (µ̂c).
Since {ȳ1, ȳ2, · · · , ȳn} is a s.r.s. from {ū1, · · · , ūN}, where ūi = ui/M̄ ,

Eµ̂c = µ, V (µ̂c) =
σ2
b

n

N − n

N − 1
,

where

σ2
b = N−1

N∑
i=1

(ūi − µ)2.

From the last section,

V̂ (µ̂c) =
1

m̄n
MSB(1− f) = n−1(n− 1)−1

n∑
i=1

(ȳi − µ̂c)
2(1− f).

So

EV̂ (µ̂c) = n−1E(n− 1)−1
n∑

i=1

(ȳi − µ̂c)
2(1− f) = n−1 N

N − 1
σ2
b (1− f) =

σ2
b

n

N − n

N − 1
.

In other words, V̂ (µ̂c) is an unbiased estimator of V (µ̂c) in this special case.
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