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Abstract
We present in this paper a time parallel algorithm for u̇ = f (t, u) with initial-value
u(0) = u0, by using the waveform relaxation (WR) technique, and the diagonaliza-
tion technique. With a suitable parameter α, the WR technique generates a functional
sequence {uk(t)} via the dynamic iterations u̇k = f (t, uk), uk(0) = αuk(T ) −
αuk−1(T )+u0, and at convergencewe get u∞(t) = u(t). EachWR iterate represents a
periodic-like differential equation, which is very suitable for applying the diagonaliza-
tion technique yielding direct parallel-in-time computation. The parameter α controls
both the roundoff error arising from the diagonalization procedure and the conver-
gence factor of theWR iterations, and we perform a detailed analysis for the influence
of the parameter α on the method. We show that the roundoff error is proportional to
ε(2N + 1)max{|α|2, |α|−2} (N = T /Δt and ε is the machine precision), and the
convergence factor can be bounded by |α|e−T L/(1 − |α|e−T L), where L ≥ 0 is the
one-sided Lipschitz constant of f . We also perform a convergence analysis at the dis-
crete level and the effect of temporal discretizations is explored. Our analysis includes
the heat and wave equations as special cases. Numerical results are given to support
our findings.
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1 Introduction

We are interested in the parallel-in-time solution of initial-value differential equations:

u̇ = f (t, u), u(0) = u0, (1.1)

where t ∈ (0, T ) and f : R+ × R
m → R

m . For parallel solution of time-dependent
partial differential equations (PDEs), the time direction offers a further possibility for
parallelization when parallelization in space saturates. Algorithms trying to use the
time direction for parallelization therefore attracted a lot of attention during the last few
years. Among these, we mention the widely studied parareal algorithm [9,11,28,32,
46,47] and the methods based on Laplace inversion [27,33,34,39,40,45]. The parareal
algorithm is a temporal two-grid method which iteratively approximates the solution
of (1.1) by using two time-integrators. The Laplace inversion technique is based on
representing the exact solution via a contour integral and then discretizing such an
integral by contour quadrature (e.g., the Trapezoidal rule). This technique is directly
parallelizable, but it is limited to linear problems so far. Other efforts towards parallel-
in-time computation for differential equations include the PARAEXP algorithm [10]
and the space-time multi-grid methods [4,8] and the parallel preconditioner technique
[29]. For an overview, see [12].

In this paper, we present a new parallel-in-time algorithm for solving (1.1), which
is based on the waveform relaxation (WR) technique [22,26,30,35,36,38] and the
diagonalization technique [6,7,31]. The idea can be summarized as follows. First, by
noticing that u(0) = αu(T ) − αu(T ) + u0 holds for all α ∈ R, we construct the
following WR iterations:{

u̇k = f (t, uk), t ∈ (0, T ),

uk(0) = αuk(T ) − αuk−1(T ) + u0,
(1.2)

where k ≥ 1 is the iteration index and u0(t) denotes the initial guess. Then, for each
iteration of (1.2), which is a differential equation with periodic-like condition, the
diagonalization technique is applied to carry out direct parallel-in-time computation.
A detailed description of such a diagonalization technique is given in Sect. 2.

In summary, the strategy is to reduce the numerical computation of (1.1) to solve a
series of periodic-like differential equations. The key point behind this idea is to obtain
a better diagonalization technique than that in [6,7,31], where the diagonalization tech-
nique is directly applied to (1.1) and then one has to use different step-sizes, e.g., the
geometrically increasing step-sizes {Δtn}N

n=1 chosen as Δtn = νn−1Δt , where ν > 1
is a free parameter and Δt is some reference step-size. For such a direct application
of the diagonalization technique, as shown in [6] it is rather difficult to balance the
roundoff error arising from the diagonalization procedure and the discretization error
due to the non-uniform step-sizes. In particular, to make the former small, ν should
be larger than 1 as much as possible, while to make the later small, ν has to close to
1. Even though the authors in [6] proposed an excellent idea towards balancing these
two errors by optimizing the parameter ν, a direct application of the diagonalization
technique only works well for the case that N is small (N denotes the number of dis-
crete time points). Generally speaking, for long time simulation the diagonalization
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technique itself does not give good numerical results and we have to combine it with
the so-called window technique.

On the contrary, as we will show in Sect. 2.1 the diagonalization technique is much
more suitable for periodic-like differential equations, for at least four reasons. First, for
this kind of problems, we can use uniform step-sizes and therefore the diagonalization
procedure does not deteriorate the discretization error. Second, it is proved that the
aforementioned roundoff error is proportional to ε(2N + 1)max{|α|−2, |α|2}, where
N = T /Δt and ε denotes the machine precision. This implies that the roundoff error
can be well controlled in practice. Third, the Fast Fourier Transform (FFT) technique
is directly applicable, while for initial-value problems this is not the case. We will
address this issue in detail in Sect. 4. Last, because uniform step-sizes are permitted,
we can extend the diagonalization technique to thewidely usedTrapezoidal rule,which
results in the well-known Crank-Nicolson scheme in PDE numerics. For initial-value
problems, the authors in [6,7,31] only considered the Backward-Euler method and as
we will comment in Remark 2.1 it seems impossible to make a generalization to the
Trapezoidal rule.

For initial-value problems, the WR technique has been extensively studied in the
past thirty years; see the numerous papers citing [26]. However, according to our best
knowledge, it is the first time to consider a WR method of the form (1.2). Previous
studies are based on the idea of system partitioning: by choosing a function H(t, u, v)

satisfying the consistency condition H(t, u, u) = f (t, u), we solve (1.1) via the
following iterations: {

u̇k = H(t, uk, uk−1), t ∈ (0, T ),

uk(0) = u0.
(1.3)

Finding a suitable partitioning is, however, not always easy. For this point, we
cite from [35]: “In practice one is interested in knowing what subdivisions yield fast
convergence for the iterations......The splitting into subsystems is assumed to be given.
How to split in such a way that the coupling remains ‘weak’ is an important question”.
Great efforts have been devoted to linear problems f (t, u) = −Au + f̃ (t) with
A ∈ R

m×m , for which the WR method is{
u̇k + A1uk = A2uk−1 + f̃ , t ∈ (0, T ),

uk(0) = u0,
(1.4)

where A1, A2 ∈ R
m×m satisfy A = A1 − A2. This is a natural extension of the

stationary iterative methods for systems of algebraic equations. The Jacobi, Gauss-
Seidel and SOR WR methods were proved to be convergent, with convergence rates
very similar to those of the corresponding stationary version (see [43]). An analogous
study for multigrid acceleration of the WR iterations was also extensively studied; see
[25] and the work by Vandewalle and his colleagues [16,20,21,43]. Parallel-in-time
implementation of the classicalWRmethod (1.4) was explored by Vandewalle et al. in
[15,42–44]. The idea is based on making a point-wise Jacobi or Gauss-Seidel partition
of A, by which the m scalar ODEs make up the kernel of computation of (1.4). After
temporal discretization by, e.g., multi-step finite difference methods, the evolution of
each scalar discrete ODE can be parallelized by cyclic reduction [3,23,24], which is a
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Fig. 1 An illustration of the
distribution of the spectrum
σ(A) in the μ-plane, where
μ ∈ σ(A) denotes an arbitrary
eigenvalue of A. The parameters
η0 and ω control the shape of the
region D

0
)

η
0

σ(A) ⊆ D(ω, η0)ω
�(μ)

�(μ)

direct parallel strategy and the parallelism is achieved without increasing the order of
the serial complexity.

For the newWRmethod (1.2), except the potential for direct parallel-in-time imple-
mentation, we will show that it also has a robust convergence factor with respect to the
discretization parameters. We study the method for linear problems u̇ + Au = f̃ (t)
both at the continuous level and discrete level, under the assumption that A is diag-
onalizable and the spectrum σ(A) is distributed in a region D(ω, η0); see Fig. 1 for
illustration:

σ(A) ⊆ D(ω, η0) := {μ = x + iy : x ≥ 0, |y| ≤ tan(ω)x}
∩ {μ = x + iy : x ≥ η0, y ∈ R} , (1.5)

where η0 ≥ 0 and ω ∈ [0, π
2 ]. We will give a precise and explicit relation between the

convergence factor and the parameters α, ω and η0. At the continuous level, we show
that the proposedWRmethod has a constant convergence factor, which can be bounded
by |α|e−T η0/(1 − |α|e−T η0). At the discrete level we consider two representative
temporal discretizations: the Backward-Eulermethod and the Trapezoidal rule, andwe
show that these two time-integrators have different effects on the convergence factor. In
particular, for the Backward-Euler method, we show that in the asymptotic sense (i.e.,
whenΔt is small) the convergence factor can be bounded by |α|e−T η0/(1−|α|e−T η0),
while for the Trapezoidal rule this bound becomes |α|/(1−|α|). Our analysis includes
the heat and wave equations as special cases.

We also give a convergence analysis of the WR method (1.2) in the nonlinear case
at the continuous level, with the assumption that f satisfies the one-sided Lipschitz
condition:

〈 f (t, u1) − f (t, u2), u1 − u2〉 ≤ −L‖u1 − u2‖2,∀t ∈ [0, T ], u1,2 ∈ R
m, (1.6)

where L ≥ 0 is a constant and 〈•〉 denotes the Euclidean inner product. For (1.6),
we show that the convergence factor of the WR method (1.2) can be bounded by
|α|e−T L/(1 − |α|e−T L).

The rest of this paper is organized as follows: in Sect. 2, we describe the diagonal-
ization technique for each iteration of (1.2), i.e., the periodic-like differential equation.
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An analysis of the roundoff error arising from the diagonalization procedure is also
given in this section. In Sects. 3 and 4 , we address the convergence properties and
give a speedup analysis of the WR method (1.2) in the linear case. The convergence
analysis of theWRmethod (1.2) in the nonlinear case is given in Sect. 5. In Sect. 6, we
present several numerical examples to support our theoretical results, and we conclude
this paper with comments in Sect. 7.

2 Discretization and diagonalization

To discretize the differential equation in (1.2), we consider the linear θ -method,

{
uk

n−uk
n−1

Δt = θ f (tn, uk
n) + (1 − θ) f (tn−1, uk

n−1),

uk
0 = αuk

N + Rk−1 with Rk−1 := −αuk−1
N + u0,

(2.1)

where n = 1, 2, . . . , N := T
Δt and θ ∈ [0, 1]. In (2.1), the choices θ = 1 and θ = 1

2 are
of particular interest. The former choice corresponds to the Backward-Euler method
with global truncation error of order O(Δt) over [0, T ], and the latter corresponds to
the Trapezoidal rule with global truncation error of order O(Δt2) over [0, T ].

We next introduce the diagonalization-based implementation of (2.1). Since the
diagonalization technique has essential differences for α 
= 0 and α = 0, we consider
these two cases separately for linear problems in Sects. 2.1 and 2.2. The nonlinear
case will be addressed in Sect. 2.3. Throughout this section, we denote by Ix ∈ R

m×m

and It ∈ R
N×N the identity matrices.

2.1 Diagonalization in the linear case:˛ �= 0

For the case f (t, u) = −Au + f̃ (t) with A ∈ R
m×m , we can rewrite (2.1) as

(B1 ⊗ Ix + B2 ⊗ A) U k = F, (2.2a)

where U k = (uk
1, uk

2, . . . , uk
N )�, B1, B2 ∈ R

N×N and F ∈ R
m N are given by

B1 = 1

Δt

⎡
⎢⎢⎢⎣

1 −α

−1 1
. . .

. . .

−1 1

⎤
⎥⎥⎥⎦ , B2 =

⎡
⎢⎢⎢⎣

θ (1 − θ)α

1 − θ θ

. . .
. . .

1 − θ θ

⎤
⎥⎥⎥⎦ ,

F =
(

Rk−1
(

1

Δt
Ix + (1 − θ)A

)
+ f̄1, f̄2, . . . , f̄N

)�

with f̄n := θ f̃n + (1 − θ) f̃n−1.

(2.2b)
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Clearly, with the matrix B(α, τ ) defined by

B(α, τ ) :=

⎡
⎢⎢⎢⎣
1 τα

τ 1
. . .

. . .

τ 1

⎤
⎥⎥⎥⎦ ∈ R

N×N , (2.3)

we have B1 = 1
Δt B(α,−1) and B2 = θ B(α, 1−θ

θ
).

Lemma 2.1 For the matrix B(α, τ ) defined by (2.3), we have

B(α, τ ) = S(α)D(α, τ )S−1(α), S(α) := Λ(α)VN , (2.4a)

where Λ(α), V and D(α, τ ) are defined by

Λ(α) = diag(1, α− 1
N , . . . , α− N−1

N ),

VN = [v1, v2, . . . , vN ], with vn =
[
1, ei 2(n−1)π

N , . . . , ei 2(n−1)(N−1)π
N

]�
,

D(α, τ ) = diag(λ1(α, τ ), . . . , λN (α, τ )), with λn(α, τ ) = 1 + τα
1
N e−i 2(n−1)π

N .

(2.4b)

Proof Let ṽn := Λ(α)vn =
[
1, α− 1

N ei 2(n−1)π
N , . . . , α− N−1

N ei 2(n−1)(N−1)π
N

]�
. Then, we

have

B(α, τ )ṽn+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + τα
1
N ei 2n(N−1)π

N

τ + α− 1
N ei 2nπ

N

.

.

.

α− n
N ei 2njπ

N + τα− n−1
N ei 2n( j−1)π

N

.

.

.

α− N−1
N ei 2n(N−1)π

N + τα− N−2
N ei 2n(N−2)π

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + τα
1
N e−i 2nπ

N

(1 + τα
1
N e−i 2nπ

N )α− 1
N ei 2nπ

N

.

.

.

(1 + τα
1
N e−i 2nπ

N )α− n
N ei 2njπ

N

.

.

.

(1 + τα
1
N e−i 2nπ

N )α− N−1
N ei 2n(N−1)π

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λn+1(α, τ )ṽn+1,

which holds for all n = 0, 1, . . . , N − 1. Hence, (2.4a) holds. ��
Note that the eigenvector matrix S given in Lemma 2.1 is independent of τ and

thus B1 and B2 given by (2.2b) are simultaneously diagonalizable:

B1 = 1

Δt
S(α)D(α,−1)S−1(α), B2 = θ S(α)D

(
α,

1 − θ

θ

)
S−1(α). (2.5)

Substituting this into (2.2a) gives

[
(S(α) ⊗ Ix )

(
1

Δt
D(α,−1) ⊗ Ix + θ D

(
α,

1 − θ

θ

)
⊗ A

)
(S−1(α) ⊗ Ix )

]
U = F .
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This implies that the computation of U can be divided into the following three steps:

(a) (S(α) ⊗ Ix )G = F,

(b)
(
λ1,n Ix + Δtλ2,n A

)
wn = Δtgn, n = 1, 2, . . . , N ,

(c) (S−1(α) ⊗ Ix )U
k = W ,

(2.6)

whereG = (g1, . . . , gN )� and W = (w1, . . . , wN )�. Now, step (b) is entirely parallel
for all N time points. The quantities λ1,n and λ2,n are defined by

λ1,n := 1 − α
1
N e−i 2nπ

N , λ2,n := θ + (1 − θ)α
1
N e−i 2nπ

N . (2.7)

In (2.6), steps (a) and (c) are dual and the computation of these two steps can be
carried out by FFT by noticing that S(α) = Λ(α)VN and VN is a Fourier matrix (more
details for this aspect will be given in Sect. 4). The major computational cost is to
solve the linear algebraic system in step (b), for which many existing linear solvers
are applicable. In particular, as shown in [48] the multi-grid method is a good choice.

Let U k and Û k be respectively the exact solution and computed solution of (2.6).
Then, the roundoff error arising from these two steps may cause inaccuracy between
U k and Û k . This effect is characterized by the so-called relative error specified as
follows.

Theorem 2.1 Let U k be the exact solution of (2.2a) and Û k be the solution obtained by
applying the diagonalization technique (2.6) to (2.2a). Assume that Step-(b) of (2.6)
is solved in a direct manner (by e.g., the LU factorization) and that the matrix A is
diagonalizable as A = VA DAV −1

A . Then, we have

�U k − Û k�2

�U k�2
≤ ε(2N + 1)max{|α|2, |α|−2} max

μ∈σ(A)

∣∣∣1 + Δtμθ + |1 − Δtμ(1 − θ)| |α| 1
N

∣∣∣∣∣∣1 + Δtμθ − |1 − Δtμ(1 − θ)| |α| 1
N

∣∣∣ ,
(2.8)

where ε is the machine precision and the norm � • �2 is defined for any U ∈ R
m N by

�U�2 = ‖(It ⊗ VA)U‖2 with It ∈ R
N×N being the identity matrix.

Proof Similar to [6],we consider an arbitrary eigenvalueμ of thematrix A and perform
the relative error analysis by replacing A by μ in (2.2a) and (2.6). In this case Ix = 1
and the linear system (2.2a) is reduced to

B̃U k = F, with B̃ = B1 + μB2.

Let D̃ := 1
Δt D(α,−1)+μθ D(α, 1−θ

θ
) with D(•) being the diagonal matrix given

in Lemma 2.1. Then, according to the backward error analysis [13, pp.122–126],
the solution obtained by the diagonalization technique (2.6) satisfies the perturbed
systems

(S + δS1)Ĝ = F, (D̃ + δ D̃)Ŵ = Ĝ, (S−1 + δS2)Û
k = Ŵ , (2.9)
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where δS1, δS2 and δ D̃ denote the roundoff error of the matrices S, S−1 and D̃. From
[13, pp.122-126] we have

‖δS1‖2 ≤ εN‖S‖2 + O(ε2), ‖δS2‖2 ≤ εN‖S−1‖2 + O(ε2), ‖δ D̃‖ ≤ ε‖D̃‖2 + O(ε2),

where the last inequality follows from the fact that D̃ is a diagonal matrix. Note that
solving B̃U k = F by diagonalization is equivalent to solving

(
B̃ + δ B̃

)
Û k = F with

some suitable perturbation δ B̃. Moreover, from (2.9) we have

(S + δS1)(D̃ + δ D̃)(S−1 + δS2)Û
k = F .

From these two relations, we can estimate δ B̃ as follows (see [6]):

‖δ B̃‖2 ≤ ε(2N + 1)‖S‖2‖S−1‖2‖D̃‖2 + O(ε2).

The relative error of Û k then satisfies (see [13, pp.122-126])

�U k − Û k�2

�U k�2
≤ Cond2(B̃)

‖δ B̃‖2
‖B̃‖2

≤ ε(2N + 1)‖S‖2‖S−1‖2‖D̃‖2‖B̃‖2
= ε(2N + 1)Cond2(S)‖B̃−1‖2‖D̃‖2.

(2.10)

For the matrix S given in Lemma 2.1, we have

‖S‖2 ≤ ‖Λ‖2‖V ‖2 ≤ max
{
1, |α|− N−1

N

}√
N , ‖S−1‖2 ≤ max

{
1, |α| N−1

N

} 1√
N

.

Hence,

Cond2(S) ≤ max
{
|α|, |α|−1

}
. (2.11a)

For the diagonal matrix D̃, it holds that

‖D̃−1‖2 = 1

minn=1,2,...,N

∣∣∣ 1
Δt (1 − α

1
N e−i 2(n−1)π

N ) + μθ + μ(1 − θ)α
1
N e−i 2(n−1)π

N

∣∣∣
≤ Δt∣∣∣1 + Δtμθ − |1 − Δtμ(1 − θ)| |α| 1

N

∣∣∣ ,
‖D̃‖2 = max

n=1,2,...,N

∣∣∣∣ 1Δt
(1 − α

1
N e−i 2(n−1)π

N ) + μθ + μ(1 − θ)α
1
N e−i 2(n−1)π

N

∣∣∣∣
≤ 1

Δt

(∣∣∣1 + Δtμθ + |1 − Δtμ(1 − θ)| |α| 1
N

∣∣∣) .

123



Convergence analysis of a periodic-likewaveform… 497

Now, by using (2.11a) we have

‖B̃−1‖2‖D̃‖2 ≤ ‖S‖2‖S−1‖2‖D̃−1‖2‖D̃‖2 ≤ max{|α|, |α|−1}Cond2(D̃)

≤ max{|α|, |α|−1}
∣∣∣1 + Δtμθ + |1 − Δtμ(1 − θ)| |α| 1

N

∣∣∣∣∣∣1 + Δtμθ − |1 − Δtμ(1 − θ)| |α| 1
N

∣∣∣ .
(2.11b)

Substituting (2.11a) and (2.11b) into (2.10) finishes the proof. ��

2.2 Diagonalization in the linear case:˛ = 0

The diagonalization technique presented above is different from the one studied in
[6,31]. There, the authors applied this technique, together with the Backward-Euler
method, to u̇(t)+ Au(t) = f̃ (t)with initial-value condition u(0) = u0. In this case, to
make the diagonalization technique applicable, the authors in [6,31] suggested to use
a series of different step-sizes {Δtn}N

n=1 for temporal discretization: un−un−1
Δtn

+ Aun =
f̃n , which can be represented as

(B1 ⊗ Ix + It ⊗ A)U = F̃ with B1 =

⎡
⎢⎢⎢⎢⎣

1
Δt1− 1
Δt2

1
Δt2
. . .

. . .

− 1
ΔtN

1
ΔtN

⎤
⎥⎥⎥⎥⎦ , (2.12)

where U = (u1, . . . , uN )� and F̃ = ( f̃ (t1) + u0
Δt1

, f̃ (t2), . . . , f̃ (tN ))�.
With distinguishing step-sizes, the matrix B1 can be diagonalized as B1 = SDS−1

with D = diag( 1
Δt1

, . . . , 1
ΔtN

). For general choice of these step-sizes, we have to rely

on numerical computation (e.g., the shifted QR factorization) to yield S and S−1; see
comments in [31, Sectoin 4]. Interestingly, in some special cases the matrices S and
S−1 can be written down. For example, if we fix the step-sizes as Δtn = Δtνn−1 with
ν > 1 being a free parameter and Δt being the reference step-size, the authors in [6]
proved that S and S−1 are lower tri-diagonal Toeplitz matrices with explicit formula
for each element. However, in this case the condition number of S increases rapidly
as N increases, which implies rapid increase of the roundoff error. In particular, by
letting

ν = 1 + τ with τ > 0, φ(N ) =
{

N
2 !( N

2 − 1)!, if N is even,

( N−1
2 !)2, if N is odd,

(2.13)

it holds that (see [6, Theorem 6])

�U − Û�∞
�U�∞

≤ ε
N 2(2N + 1)(N + μmaxT )

φ(N )
τ−(N−1), (2.14)

123



498 M. J. Gander, S.-L. Wu

where U and Û are respectively the exact solution of (2.12) and the diagonalization-
based numerical solution, μmax denotes the maximal eigenvalue of A and the norm
� • �∞ is defined for any U ∈ R

m N by �U�∞ = ‖(It ⊗ VA)U‖∞ with It ∈ R
N×N

being the identity matrix and VA being the eigenvector matrix of A. To obtain a
small discretization error we have to make the step-sizes as equal as possible (see [6,
Theorem 1] for explanation), i.e., τ should be as small as possible. But, for τ � 1
the estimate (2.14) implies that the relative error increases very fast as N increases.
Clearly, this is quite different from the relative error for the diagonalization technique
applied to the periodic-like problems; see (2.8).

Remark 2.1 For differential equations with initial condition, it is hard to apply the
diagonalization technique with α = 0 if the Trapezoidal rule is used. This can be
explained as follows: as before, for initial-value problems we need to use variable
step-sizes to discretize the temporal derivative, which results in

un−un−1

Δtn
+ 1

2
(Aun + Aun−1) = 1

2
( f̃n + f̃n−1), n = 1, 2, . . . , N .

Then, similar to (2.12) we can represent this discrete system as

(B1 ⊗ Ix + B2 ⊗ A) U = F̃, B1 =

⎡
⎢⎢⎢⎢⎣

1
Δt1− 1
Δt2

1
Δt2
. . .

. . .

− 1
ΔtN

1
ΔtN

⎤
⎥⎥⎥⎥⎦ ,

B2 = 1

2

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦ , (2.15)

where F̃ = ( f̃ (t1) + u0
2Δt1

− 1
2 Au0, f̃ (t2), . . . , f̃ (tN ))�. Clearly, the matrix B2 is

not diagonalizable and therefore the diagonalization technique can not be applied to
(2.15).

2.3 Diagonalization in the nonlinear case

We now show how to apply the diagonalization technique to nonlinear differential
equations with periodic-like condition. Here, we only consider the case α 
= 0. The
case α = 0, i.e., the initial-value problems, are considered in [7]. For the discrete ODE
system (2.1), we can represent the discrete solutions by

(B1 ⊗ Ix )U k = F(U k) :=

⎛
⎜⎜⎜⎝

1
Δt Rk−1 + (1 − θ) f (t0, αuk

N + Rk−1) + θ f (t1, uk
1)

(1 − θ) f (t1, uk
1) + θ f (t2, uk

2)

.

.

.

(1 − θ) f (tN−1, uk
N−1) + θ f (tN , uk

N )

⎞
⎟⎟⎟⎠ , (2.16)
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where B1 ∈ R
N×N is the matrix defined by (2.2b) and Ix ∈ R

m×m is the identity
matrix.

We now apply a quasi-Newton method to solve the nonlinear system (2.16). This
leads with some initial iterate U k[0] to the iteration

U k[l+1] = U k[l] − J−1(U k[l])
(
(B1 ⊗ Ix )U

k[l] − F(U k[l])
)

, (2.17)

where U k
[l] = (uk

[l],1, . . . , uk
[l],N )� and J(U k

[l]) is an approximation to the Jacobian

B1 ⊗ Ix − ∂U F(U k
[l]). We determine J(U k

[l]) as follows (see [7]): we have

∂U F(U k
[l]) =

⎛
⎜⎜⎜⎝

θ∂u f1 α(1 − θ)∂u f ∗
0

(1 − θ)∂u f1 θ∂u f2
. . .

. . .

(1 − θ)∂u fN−1 θ∂u fN

⎞
⎟⎟⎟⎠ , (2.18a)

where ∂u fn = ∂u f (tn, uk
[l],n) with n = 1, 2, . . . , N and ∂u f ∗

0 = ∂u f (t0, αuk
[l],N +

Rk−1). We then approximate the N + 1 Jacobian matrices {∂u fn}N
n=1 and ∂u f ∗

0 by a

single matrix 1
N

∑N
n=1 ∂u f (tn, uk

[l],n). Define

Ak
[l] := − 1

N

N∑
n=1

∂u f (tn, uk
[l],n). (2.18b)

Then, from (2.18a) we have ∂U F(U k
[l]) ≈ −B2 ⊗ Ak

[l]. This relation gives the choice

of J(U k
[l]):

J(U k
[l]) := B1 ⊗ Ix + B2 ⊗ Ak

[l]. (2.18c)

Now, a routine calculation yields that (2.17) can be represented as

J(U k
[l])U

k
[l+1] = F(U k

[l]) − (B2 ⊗ Ak
[l])U

k
[l]. (2.19)

As before, we diagonalize B1 and B2 according to Lemma 2.1 and then represent
J(U k

[l]) as

J(U k
[l])=(S(α) ⊗ Ix )

(
1

Δt
D(α,−1) ⊗ Ix +θ D

(
α,

1 − θ

θ

)
⊗ Ak

[l]
)

(S−1(α) ⊗ Ix ).
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Hence, similar to (2.6) we can solve U k
[l+1] from (2.19) by the three steps

(a) (S(α) ⊗ Ix )G = F(U k
[l]) − (B2 ⊗ Ak

[l])U
k
[l],

(b)
(
λ1,n Ix + Δtλ2,n Ak

[l]
)

wn = Δtgn, n = 1, 2, . . . , N ,

(c) (S−1(α) ⊗ Ix )U
k
[l+1] = W ,

(2.20)

where G = (g1, . . . , gN )� and W = (w1, . . . , wN )�. Now, step (b) is parallel for all
the N time points. Here, the quantities λ1,n and λ2,n are given in (2.7).

3 Convergence analysis for linear problems

In this section, we perform a convergence analysis for (1.2) in the linear case,

{
u̇k + Auk = f̃ (t), t ∈ (0, T ),

uk(0) = αuk(T ) − αuk−1(T ) + u0,
(3.1)

where A ∈ R
m×m .

3.1 Continuous case

Let ek(t) := uk(t) − u(t) be the error function of the kth iteration. Then, we have

ek(t) = e−At ek(0), ek−1(t) = e−At ek−1(0). (3.2)

By letting t = T in these two equalities and by substituting them into the periodic-like
condition ek(0) = αek(T )−αek−1(T ), we get ek(0) = αe−AT ek(0)−αe−AT ek−1(0).
Hence,

ek(0) = −αe−AT

1 − αe−AT
ek−1(0). (3.3)

As in Theorem 2.1, we assume that A is diagonalizable as

A = VA DAV −1
A , DA = diag(μ1, μ2, . . . , μm). (3.4)

Then, for any vector norm ‖ • ‖ it holds that

‖VAek(0)‖ ≤ max
z∈σ(AT )

W (z)‖VAek−1(0)‖, W (z) := |αe−z |
|1 − αe−z | . (3.5)

To make a quantitive analysis of W (z), we consider a representative distribution
of σ(A): σ(A) ⊆ D(ω, η0), as given by (1.5). By using the maximum principle for

123



Convergence analysis of a periodic-likewaveform… 501

analytic functions and the symmetry of W (z) with respect to the real axis, it is easy
to see that

max
z∈σ(AT )

W (z) ≤ max
z∈∂+D(ω,η)

W (z), (3.6)

where ∂+D(ω, η) := {z = η + iy : 0 ≤ y ≤ tan(ω)x} ∪ {z = x + iy : x ≥ η,

y = tan(ω)x} with η := T η0 is the half boundary of σ(AT ) in the first quadrant
(see Fig. 1).

Theorem 3.1 Suppose that (3.4) holds and that σ(A) lies in the region D(ω, η0) with
η0 ≥ 0 and ω ∈ [0, π

2 ]. Then, for α ∈ (−1, 1) the error function ek(t) of the WR
method (3.1) satisfies

max
t∈[0,T ] ‖VAek(t)‖ ≤ ρk(α, ω, η)‖VAe0(0)‖, (3.7a)

where the convergence factor ρ(α, ω, η) of the WR method (3.1) is

ρ(α, ω, η) =

⎧⎪⎨
⎪⎩

|α|e−η

1−αe−η , ifω = 0,

max{H(η), H(x†)}, if ω ∈ (0, π
2 ), tan(ω)η < π and α < 0,

|α|e−η

1−|α|e−η , otherwise,

(3.7b)

where

H(x) = |α|e−x√
1 + α2e−2x − 2αe−x cos(x tan(ω))

,

x† =
{

η, if H1(
π

2 tan(ω)
) ≤ 0,

max{η, x∗}, otherwise,

(3.7c)

and x∗ is the unique root of H1(x) for x ∈ [ π
2 tan(ω)

, π
tan(ω)

] with

H1(x) = |α|e−x [tan(ω) sin(tan(ω)x) − cos(tan(ω)x)] − 1. (3.7d)

Proof From (3.5) and (3.6), we have

‖VAek(0)‖ ≤ max
z∈∂+D(ω,η)

W (z)‖VAek−1(0)‖. (3.8a)

Since σ(A) ⊆ D(ω, η0), i.e., all the eigenvalues of A have nonnegative real parts,
from (3.2) we have maxt∈[0,T ] ‖ek(t)‖ ≤ ‖ek(0)‖ and this together with (3.8a) gives

max
t∈[0,T ] ‖ek(t)‖ ≤

(
max

z∈∂+D(ω,η)
W (z)

)k

‖VAe0(0)‖. (3.8b)
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Hence, we only need to prove that maxz∈∂+D(ω,η) W (z) ≤ ρ(α, ω, η).
For ω = 0, ∂+D(ω, η) := {z = x : x ≥ η} and thus by using α ∈ (−1, 1) we have

max
z∈∂+D(ω,η)

W (z) = max
z≥η

|α|e−z

1 − αe−z
= |α|e−η

1 − αe−η
.

For ω = π
2 , ∂+D(ω, η) := {z = η + iy : y ≥ 0}. Then, we have

max
z∈∂+D(ω,η)

W (z) = max
y≥0

|α|e−η

|1 − αe−η−iy | ≤ |α|e−η

1 − |α|e−η
,

and this gives the third result in (3.7b) for ω = π
2 . For the case ω ∈ (0, π

2 ), we split
the analysis of finding the maximum of W (z) into two parts:

max
z∈∂+D(ω,η)

W (z) = max{W1,max, W2,max},
W1,max := max

z=η+iy,y∈[0,tan(ω)η] W (z), W2,max := max
z=x(1+i tan(ω)),x≥η

W (z).
(3.9)

For W1,max, with the function H(x) given by (3.7c), we obtain by a direct computation

W1,max = max
y∈[0,tan(ω)η]

|α|e−η√
1 + α2e−2η − 2αη−η cos(y)

=
⎧⎨
⎩

|α|e−η√
1+α2e−2η−2αe−η cos(η tan(ω))

= H(η), if tan(ω)η < π and α < 0,

|α|e−η

1−|α|e−η , otherwise.

(3.10)

It remains to estimate W2,max, and we get

W2,max = max
x≥η

|α|e−x√
1 + α2e−2x − 2αe−x cos(x tan(ω))

≤ |α|e−η

1 − |α|e−η
,

∀ω ∈
(
0,

π

2

)
, α ∈ (−1, 1). (3.11a)

Since we are interested in the maximum of W1,max and W2,max (see (3.9)), from
(3.10) we know that we can not use (3.11a) for the case tan(ω)η < π and α < 0, since
otherwise the effect of ω is entirely neglected. We now give an explicit expression of
W2,max for tan(ω)η < π and α < 0. To this end, with the function H(x) given by
(3.7c) we claim

W2,max = max
x∈[η, π

tan(ω)
]
H(x). (3.11b)
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π
tan(ω)

Fig. 2 Illustration of the relation between H(x) and Ĥ(x). The function H(x) has at most two local extrema
in the relevant interval [0, π

tan(ω)
], as indicated by the stars

Since W2,max = maxx≥η H(x), it suffices to prove maxx≥η

H(x) = maxx∈[η, π
tan(ω)

] H(x). To this end, we define another function Ĥ(x) :=
|α|e−x

1−αe−x . Clearly, H(x) ≤ Ĥ(x) for all x ≥ η. Moreover, it holds that H( π
tan(ω)

) =
Ĥ( π

tan(ω)
) and that Ĥ(x) is a decreasing function of x . Hence, a direct computation

yields that the maximum of H(x) must be attained in the interval [η, π
tan(ω)

]. An
illustration of the relation between H(x) and Ĥ(x) is shown in Fig. 2.

For the function H(x) with α < 0, a routine calculation yields

sign(H ′(x)) = sign(H1(x)), H ′
1(x) = |α|(1 + tan2(ω))e−x cos(tan(ω)x),(3.11c)

where H1(x) is the function given by (3.7d). To derive the maximum of H(x) for
x ∈ [η, π

tan(ω)
], it is sufficient to determine the roots of H1(x). We first study the roots

of H1(x) in the interval [0, π
tan(ω)

] and then we consider the shorter interval [η, π
tan(ω)

].
From the expression of H ′

1(x) given by (3.11c), it is clear that H1(x) is an increasing
function for x ∈ [0, π

2 tan(ω)
] and it is a decreasing function for x ∈ [ π

2 tan(ω)
, π
tan(ω)

].
The unique maximizer of H1(x) is x = π

2 tan(ω)
. Hence, H1(x) can have at most 2

roots for x ∈ [0, π
tan(ω)

]. This, together with the fact H1(0) < 0, implies that we only
need to consider three situations, as illustrated in Fig. 3. The last situation can not
occur, because in this case H1(x) > 0 for x ∈ [ π

2 tan(ω)
, π
tan(ω)

] and therefore for a

sufficiently small δ > 0 it holds that H( π
tan(ω)

+ δ) > H( π
tan(ω)

) = Ĥ( π
tan(ω)

), where

Ĥ(x) = |α|e−x

1−αe−x . This is a contradiction, as we can see in Fig. 2.
In summary, if H1(

π
2 tan(ω)

) ≤ 0 the function H(x) is decreasing for x ∈ [0, π
tan(ω)

];
otherwise H(x) has one local minimum and one local maximum in the inter-
val [0, π

tan(ω)
] (see Fig. 2 for illustration). The local maximum point, denoted by
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x
0 π

tan(ω)

H1(x)

π
2 tan(ω)

x
0 π

tan(ω)

H1(x)

π
2 tan(ω)

x

H1(x)

π
tan(ω)

0 π
2 tan(ω)

Fig. 3 The three cases for the roots of the function H1(x) given by (3.7c). The last case can not occur

x∗, is the unique root of H1(x) in the half interval [ π
2 tan(ω)

, π
tan(ω)

]. Restricting to
the interval [η, π

tan(ω)
] that we are interested in, we have maxx∈[η, π

tan(ω)
] H(x) =

max{H(η), H(x†)}, where x† is the quantity given by (3.7c). Substituting this into
(3.11b) gives

W2,max = max{H(η), H(x†)}, if η tan(ω) < π and α < 0. (3.11d)

Now, if η tan(ω) < π and α < 0, (3.11d) and (3.10) prove the second result in
(3.7b); otherwise (3.11a) and (3.10) prove the third result in (3.7b). ��

3.2 Discrete case

We now perform a convergence analysis of the iterative method (3.1) at the discrete
level. Such an analysis reveals how the convergence rate depends on the time-integrator
and the step-size Δt . Let uk

n be the numerical solution of (3.1) at time point t = tn
and un be the converged solution. Then, for linear θ -method it is easy to see that the
error ek

n := uk
n − un satisfies

{
(Ix + θΔt A)ek

n = (Ix − (1 − θ)Δt A)ek
n−1, n = 1, 2, . . . , N ,

ek
0 = αek

N − αek−1
N .

From this we have

{
ek

N = RN
θ (Δt A)ek

0, Rθ (Δt A) := (Ix + θΔt A)−1(Ix − (1 − θ)Δt A),

ek
0 = αek

N − αek−1
N .

(3.12)

Let A = VA DAV −1
A with DA being the diagonal matrix. Then, similar to the analysis

in the continuous case it follows from (3.12) that

‖VAek(0)‖ ≤ max
z∈σ(Δt A)

W̃ (z)‖VAek−1(0)‖, W̃ (z) := |αRN
θ (z)|∣∣1 − αRN

θ (z)
∣∣ . (3.13)

123



Convergence analysis of a periodic-likewaveform… 505

To get the maximum of W̃ (z) for z ∈ σ(Δt A), by using the maximum principle for
analytic functions and the symmetry of W̃ (μ) with respect to the real axis we have

max
z∈D(ω,Δtη0)

W̃ (z) = max
z∈∂+D̃(ω,η̃)

W̃ (z), (3.14)

where ∂+D̃(ω, η̃) := {z = η̃ + iy : 0 ≤ y ≤ tan(ω)x} ∪ {z = x + iy : x ≥ η̃,

y = tan(ω)x} and η̃ := Δtη0. In the following, we consider θ = 1 and θ = 1
2 .

3.2.1 The Backward-Euler method (� = 1)

Let z = x + iy ∈ ∂+D̃(ω, η̃). Then, for θ = 1 we have

R1(z) = 1

1 + x + iy
= |R1(z)|e−iψ(z), ψ(z) = arcsin

(
y

|R1(z)|
)

. (3.15)

Theorem 3.2 Suppose that (3.4) holds and that σ(A) lies in the region D(ω, η0) with
η0 ≥ 0 and ω ∈ [0, π

2 ]. Then, for α ∈ (−1, 1) the discrete error {ek
n} of the WR method

(3.1) satisfies

max
n=0,1,...,N

‖VAek
n‖ ≤ ρ̃k

1 (α, ω, η̃)‖VAe0(0)‖, (3.16a)

where ρ̃1(α, ω, η̃) is the convergence factor of the discrete WR method using the
Backward-Euler method,

ρ̃1(α, ω, η̃) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|α|RN
1 (η̃)

1−αRN
1 (η̃)

, ifω = 0,

max{W̃1,max, W̃2,max}, if ω ∈ (0, π
2 ), ψ† < π

N and α < 0,

|α|RN
1 (η̃)

1−|α|RN
1 (η̃)

, otherwise.

(3.16b)

In (3.16b), the quantities ψ†, W̃1,max and W̃2,max are given by

ψ† = arcsin

(
η̃ tan(ω)√

(1 + η̃)2 + η̃2 tan2(ω)

)
, W̃1,max = |α|RN

1 (η̃)√
1 + α2R2N

1 (η̃) − 2αRN
1 (η̃) cos(Nψ†)

,

(3.16c)

W̃2,max = max
x∈[η̃, x̃†]

|α||RN
1 (x(1 + i tan(ω)))|

|1 − αRN
1 (x(1 + i tan(ω)))| with x̃† = 1

tan(ω)
√

1
sin2( π

N )
− 1 − 1

.

(3.16d)
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Proof From (3.13) and (3.14), we have

‖VAek
0‖ ≤ max

z∈∂+D(ω,η̃)
W̃ (z)‖VAek−1

0 ‖,

where W̃ (z) is given by (3.13) with θ = 1. Since σ(A) ⊆ D(ω, η0) (i.e., all the
eigenvalues of A have nonnegative real parts) and the Backward-Euler method is
A-stable, from (3.12) we have

‖ek
n‖ ≤ max

z∈∂+D(ω,η̃)
|Rn

1(z)|‖ek
0‖ ≤ ‖ek

0‖, ∀n = 0, 1, . . . , N .

This gives maxn=0,1,...,N ‖ek
n‖ ≤ (

maxz∈∂+D(ω,η̃) W̃ (z)
)k ‖VAe00‖. Hence, similar

to the continuous case we only need to prove that maxz∈∂+D(ω,η̃) W̃ (z) ≤ ρ̃1(α, ω, η̃).

If ω = 0, we have z = x ≥ η̃ and thus R1(z) = 1
1+x ∈

(
0, 1

1+η̃

]
. Hence, from

(3.14) we have maxz=x≥η̃ W̃ (z) = |α|RN (η̃)

1−αRN (η̃)
. If ω = π

2 , we have z = η̃ + iy with
y ≥ 0 and thus from (3.15)

max
z=η̃+iy,y≥0

W̃ (z) = max
z=η̃+iy,y≥0

|α||RN
1 (z)|

|1 − α|RN
1 (z)|e−i Nψ | = |α|RN

1 (η̃)

1 − |α|RN
1 (η̃)

.

This gives the third result in (3.16b) for ω = π
2 .

It remains to consider ω ∈ (0, π
2 ). It holds that

max
z∈∂+D̃(ω,η̃)

W̃ (z) = max

{
max

y∈(0,tan(ω)η̃]
W̃ (η̃ + iy),max

x≥η̃
W̃ (x + i x tan(ω))

}
.(3.17)

Letψ(y) = arcsin

(
y√

(1+η̃)2+y2

)
. Thenwithψ† given by (3.16c)we haveψ(y) ≤ ψ†

for y ∈ [0, tan(ω)η̃], and hence

max
y∈(0,tan(ω)η̃]

W̃ (η̃ + iy) = max
z=η̃+iy,y∈(0,tan(ω)η̃]

|α||RN
1 (z)|√

1 + α2|RN
1 (z)|2 − 2α|RN

1 (z)| cos(Nψ(y))

≤ max
z=η̃+iy,y∈(0,tan(ω)η̃]

|α|RN
1 (η̃)√

1 + α2R2N
1 (η̃) − 2αRN

1 (η̃) cos(Nψ(y))

=

⎧⎪⎨
⎪⎩

|α|RN
1 (η̃)√

1+α2R2N
1 (η̃)−2αRN

1 (η̃) cos(Nψ†)
, if ψ† < π

N and α < 0,

|α|RN
1 (η̃)

1−|α|RN
1 (η̃)

, otherwise.
(3.18a)

For z = x(1+ i tan(ω)) with x ≥ η̃, by noticing that |R1(z)| ≤ |R1(η̃(1+ i tan(ω)))|
we have

max
x≥η̃

W̃ (x(1 + i tan(ω))) ≤ |αRN
1 (η̃(1 + i tan(ω)))|

1 − |αRN
1 (η̃(1 + i tan(ω)))| ≤ |α|RN

1 (η̃)

1 − |α|RN
1 (η̃)

, (3.18b)

123



Convergence analysis of a periodic-likewaveform… 507

which holds for all α ∈ (−1, 1) and ω ∈ (0, π
2

)
. For the special case ψ† < π

N and

α < 0, we let H̃(x) = |α||RN
1 (x(1+i tan(ω)))|

|1−αRN
1 (x(1+i tan(ω)))| and then similar to (3.11b) we have

max
x≥η̃

W̃ (x(1 + i tan(ω))) = max
x∈[η̃, x̃†]

H̃(x), (3.18c)

where x̃† is determined by N arcsin

(
x tan(ω)√

(1+x)2+(x tan(ω))2

)
= π (solving this nonlinear

equation gives the expression of x̃† given by (3.16c)). To get (3.18c), we rewrite H̃(x)

as

H̃(x) = |α||RN
1 (x(1 + i tan(ω)))|√

1 + α2|R2N
1 (x(1 + i tan(ω)))| − 2α|RN

1 (x(1 + i tan(ω)))| cos(Nψ(x))

.

where ψ(x) = arcsin

(
tan(ω)x√

(1+x)2+(x tan(ω))2

)
and the quantity x̃† satisfies Nψ(x̃†) =

π . From thiswe have H̃(x) ≤ ̂̃H(x) := |α||RN
1 (x(1+i tan(ω)))|

1−α|RN
1 (x(1+i tan(ω)))| . Since

̂̃H(x) is a decreas-

ing function of x and ̂̃H(x̃†) = H̃(x̃†), we have maxx≥η̃ H̃(x) = maxx∈[η̃,x̃†] H̃(x),
which gives (3.18c).

Now, if ψ† < π
N and α < 0, we get the second result in (3.16b) by substituting

(3.18c) and (3.18a) into (3.17); otherwise by substituting (3.18b) and (3.18a) into
(3.17) we get the third result in (3.16b). ��

3.2.2 The Trapezoidal rule (� = 1
2 )

We next consider the Trapezoidal rule, for which the stability function is

R1
2
(z) = 1 − x

2 − i y
2

1 + x
2 + i y

2

= |R1
2
(z)|e−iψ, ψ = arccos

⎛
⎝ 1 − x2+y2

4√
(1 − x2+y2

4 )2 + y2

⎞
⎠ .

(3.19)

Theorem 3.3 Suppose that (3.4) holds and that σ(A) lies in the region D(ω, η0) with
η0 ≥ 0 and ω ∈ [0, π

2 ]. Then, for α ∈ (−1, 1) the error function ek(t) of the WR
method (3.1) satisfies

max
t∈[0,T ] ‖VAek(t)‖ ≤ ρ̃k

1
2
(α, ω, η̃)‖VAe0(0)‖, (3.20a)
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where η̃ := Δtη0. The quantity ρ̃ 1
2
(α, ω, η̃) is the convergence factor of the discrete

WR method using the Trapezoidal rule,

ρ̃ 1
2
(α, ω, η̃) = |α|

1 − |α| , ∀ω ∈
[
0,

π

2

]
. (3.20b)

Proof Similar to Theorem 3.2, we only need to prove maxz∈∂+D(ω,η̃) W̃ (z) ≤
ρ̃ 1

2
(α, ω, η̃), where W̃ (z) is given by (3.13) with θ = 1

2 . Since |R1
2
(z)| ≤ 1 for

z ∈ ∂+D(ω, η̃), we have

max
z∈∂+D(ω,η̃)

W̃ (z) ≤ max
z∈D(ω,η0)

|α|
1 − |α|

∣∣∣∣RN
1
2
(z)

∣∣∣∣
≤ |α|

1 − |α| ,

which gives (3.20b). ��

Remark 3.1 The convergence factor ρ̃ 1
2
(α, ω, η̃) given by (3.20b) is sharp and this can

be explained as follows: we have

max
μ∈D(ω,η0)

‖W̃ (μ)‖∞ ≥ lim
μ∈D(ω,η0),|μ|→∞

|α|∣∣∣∣1 − αRN
1
2
(μ)

∣∣∣∣
= |α|

1 − (−1)N α
.

where the ‘(−1)N ’ comes from the fact that lim|μ|→∞ R1
2
(μ) = −1. Clearly,

if α ∈ (−1, 0) (resp. α ∈ (0, 1)) and if N is even (resp. odd), it holds that
maxμ∈D(ω,η0) ‖W̃ (μ)‖∞ = |α|

1−|α| .

3.3 Discussion of the results

In this section, we comment the results given by Theorems 3.1, 3.2 and 3.3 .

3.3.1 Effect of temporal discretization

We first discuss the effect of the temporal discretization on the convergence factor. For
the Backward-Euler method, since N = T

Δt , η̃ = Δtη0 and R1(z) = 1
1+z we have

lim
Δt→0

RN
1 (Δt(1 + i tan(ω))) = e−T (1+i tan(ω)), lim

Δt→0
Nψ† = tan(ω)T η0 = tan(ω)η,

lim
Δt→0

RN
1 (η̃) = e−T η0 = e−η, lim

Δt→0
N x̃† = π

tan(ω)
,
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where η = T η0. From the first two results, we therefore get

lim
Δt→0

W̃2,max = lim
Δt→0

max
x∈[η0, N x̃†/T ]

|α||RN
1 (Δt x(1 + i tan(ω)))|

|1 − αRN
1 (Δt x(1 + i tan(ω)))|

= max
x∈[η0, π

T tan(ω)
]

|α|e−T x

|1 − αe−T x(1+i tan(ω))| = max
x∈[η, π

tan(ω)
]

|α|e−x

|1 − αe−x(1+i tan(ω))| .

Hence, by the proof of Theorem 3.1 we get limΔt→0 W̃2,max = W2,max =
max{H(η), H(x†)} (see (3.11d)).

From these calculations and by comparing (3.7b) to (3.16b), it is clear that the
convergence factor ρ̃1(α, ω, η̃) approaches to the continuous convergence factor
ρ(α, ω, η) as Δt goes to 0. By choosing T = 2 and two values of α, we illustrate this
point in Fig. 4 on the top row. However, for the Trapezoidal rule such a consistency
does not hold between ρ and ρ̃ 1

2
; see Fig. 4 on the bottom row. This can be also seen by

comparing ρ̃ 1
2
given by (3.20b) to the quantityρ given by (3.7b). Such an inconsistency

comes from the fact that the stability function R1
2
(z) satisfies limz→∞ R1

2
(z) = −1

and thus as we commented in Remark 3.1 the maximum of W̃ (z) defined by (3.13)
(with θ = 1

2 ) is |α|/(1 − |α|). In other words, the convergence factor ρ̃ 1
2
of the WR

method using the Trapezoidal rule as the time-integrator depends on |α| only.
Remark 3.2 (Worst case estimate of the convergence factor) From Theorems 3.2 and
3.3, we have the following worst case estimate of the convergence factors of the
proposed WR method at the discrete level:

⎧⎨
⎩

ρ̃1(α, ω, η̃) ≤ |α|e−T η0

1−|α|e−T η0
, Backward-Euler(in the asymptotic sense, i.e.,Δt is small),

ρ̃ 1
2
(α, ω, η̃) ≤ |α|

1−|α| , Trapezoidal Rule,
(3.21)

which holds for allω ∈ [0, π
2 ] and η0 ≥ 0. The first result in (3.21) is interesting, since

it implies that for an ODE system u′(t)+ Au(t) = f̃ (t)with minμ∈σ(A) �(μ) = η0 >

0 the WR method converges faster as T increases. We will illustrate this in Sect. 6.1
by using transmission line circuits [14] as the model. For time-dependent PDEs, the
worst case estimate (3.21) implies that the WR method proposed in this paper has a
robust convergence rate with respect to the discretization parameters Δx and Δt .

3.3.2 Two special cases: heat equations and wave equations

Two special cases are of particular interest,ω = 0 andω = π
2 . The former corresponds

to the case where A is a (semi-)positive definite matrix, which often arises from
discretizing the heat equations. The latter case may arise from discretizing the wave
equation ∂t t u +Δu = f . For these two cases we show in Fig. 5 the convergence factor
ρ as a function of α ∈ [− 1

2 ,
1
2 ] for three values of η. Clearly, for the heat equations

it is better to use a negative parameter α. For the wave equations, α and −α have the
same effect.
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4 Speedup analysis

We now discuss the speedup of the proposed WR method. The speedup is defined by

speedup = Tserial

Tparallel
, (4.1)

where Tserial denotes the total cost for completing the computation of the N discrete
solutions step by step and Tparallel denotes the cost of the WR method to reach a
prescribed tolerance. We denote by M the total real floating point operations (flops)
for solving one time step of the ODE system and therefore the cost for the serial
computation is

Tserial = NM. (4.2)

We next analyze the cost for the WR method. Let ε be the prescribed tolerance and
ρ̃ be the convergence factor.1 Then, if ‖VAe0(0)‖ = O(1) the number of iterations is

K = log2 ε

log2 ρ̃
. (4.3a)

It is then sufficient to estimate the cost (denoted by Mdiag) for implementing the
diagonalization procedure (2.6), which consists of two parts. We suppose that N
processors are available.

• Parallel implementation of (2.6)-(a) and (2.6)-(c). We start from (2.6)-(c), because
for this step a forward FFT is involved (for (2.6)-(a) we need to do inverse FFT).
For (2.6)-(c), since S(α) = Λ(α)VN we have U k = (S(α) ⊗ Ix )W = (Λ(α) ⊗
Ix )(VN ⊗ Ix )W and therefore the computation of U k can be divided into two steps,
Ũ k := (VN ⊗ Ix )W andU k = (Λ(α)⊗ Ix )Ũ k . Following the Cooley-Tukey algorithm
[2] the first matrix-vector product can be carried out by using FFT since VN is a Fourier
matrix. The computational cost of such a FFT is

Mserial−FFT := (5N log2 N )m.

The appearance of m in Mserial−FFT is because of the fact that the vector W consists
of N subvectors {wn}N

n=1 withwn ∈ C
m and thus during the FFT every element of VN

acts on vectors (of length m) instead of scalar complex numbers. In the past decades,
there was a lot of effort toward reducing the computational cost of FFT on parallel
architectures; see, e.g., [1,5,18,19,37,41]. According to these studies, the speedup of
the parallel FFT increases linearly when N increases. In other words, for the matrix-
vector product (VN ⊗ Ix )W the computational cost of the parallel FFT is of order
O(m log2 N ).

1 For the Backward-Euler method ρ̃ = ρ̃1 and for the Trapezoidal rule ρ̃ = ρ̃ 1
2
, where ρ̃1 and ρ̃ 1

2
are

given by Theorems 3.2 and 3.3.
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More precisely, if both N and P (the number of used processors) are powers of 2
and P < N , we can finish the computation of (VN ⊗ Ix )W by the radix-4 BSP (bulk
synchronous parallel) FFT algorithm with total flop count (see [18, Section 4]):

Mparalllel−FFT := 17

4

Nm

P
log2 N + 3

4

Nm

P

[(
log2

N

P
mod 2

)⌊
log N

P
N
⌋

+
(
log2 N mod log2

N

P

)
mod 2

]
.

For given N , we consider in the following the maximal value of P permitted by
the radix-4 BSP FFT algorithm: P = N

2 ,
2 which leads to

Mparalllel−FFT = 17

2
m log2 N + 3

2
m
(⌊
log2 N

⌋+ log2 N mod 2
) ≈ 10m log2 N .

After obtaining the intermediate vector Ũ k , the computation of U k = (Λ(α)⊗ Ix )Ũ k

is naturally parallel since Λ(α) is a diagonal matrix. For this part, the flop count for
each processor is 4m. Therefore, the total flop count for parallel implementation of
(2.6)-(c) is

M(2.6)−(c) = 4m + 17

2
m log2 N + 3

2
m
(⌊
log2 N

⌋+ log2 N mod 2
)
.

For (2.6)-(a), we have

G = (S(α) ⊗ Ix )
−1F = (V −1

N Λ−1(α) ⊗ Ix )F = (V −1
N ⊗ Ix )

[
(Λ−1(α) ⊗ Ix )F

]
.

Hence, we can first compute the matrix-vector product in the brackets with com-
putational cost 4m and then carry out an inverse FFT. According to [18], the above
4-radix BSP FFT algorithm is directly applicable to such an inverse procedure. In
summary, the total flop count for completing the matrix-vector products in (2.6)-(a)
and (2.6)-(c) is

M(2.6)−(a,c) := 2M(2.6)−(a) = 8m + 17m log2 N + 3m
(⌊
log2 N

⌋+ log2 N mod 2
)
.

• Parallel implementation of (2.6)-(b). All the N linear systems in (2.6)-(b) are
completely independent and thus this step is naturally parallel. Similar to [31], we
assume that the computational cost for solving each of these N linear systems is M
as well. That is, the computational cost for solving each diagonalized linear system
in (2.6)-(b) is comparable to that of forwarding one step of the time-integrator in the
standard approach.

2 This choice may be not optimal in practice.
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According to the above analysis, the total computational cost for implementing the
diagonalization procedure (2.6) (i.e., the computational cost for each WR iteration)
is3

Mdiag = 8m + 17m log2 N + 3m
(⌊
log2 N

⌋+ log2 N mod 2
)+ M.

Hence, by using (4.3a) we know that to reach the prescribed tolerance ε the com-
putational cost for the WR method is

Tparallel = K (Mdiag + Mcomm)

= K
[
8m + 17m log2 N + 3m

(⌊
log2 N

⌋+ log2 N mod 2
)+ M + Mcomm

]
,
(4.3b)

where Mcomm denotes communication cost for each WR iteration.
Now, substituting (4.3b) and (4.2) into (4.1) gives

speedup = NM

K
[
8m + 17m log2 N + 3m

(⌊
log2 N

⌋+ log2 N mod 2
)+ M + Mcomm

] .
(4.4)

IfM = cm with some c > 1, N � M and Mcomm � M, from (4.4) we have

speedup ≈ cN

K
[
11 + 20 log2 N + c

] . (4.5)

From the worst case estimate of the convergence factor given by Remark 3.2, the
convergence factor is robust with respect to N and therefore increasing N does not
increase K . Hence, from (4.5) we know that the speedup of the WR method increases
up to the log factor linearly as N increases. In the case c � 1, the speedup is of order
O(N/K ).

The assumption M = cm with c > 1 holds when the coefficient matrix A is spare
and a robust linear solver is used (e.g., V-cycle and W-cycle multigrid methods [48]).
The assumption N � M holds naturally when high dimension time-dependent PDE
is concerned. Finally, the assumption Mcomm � M holds naturally as well, because in
eachWRiterationweonly need tomake anupdate asuk(0) = αuk(T )−αuk−1(T )+u0
and just the value of the previous iterateuk−1(t) at thefinal timepoint t = T is required.
Therefore, the length of data transported between processors is m.

We now show some plots for the speedup according to (4.5) in the worst case by
letting c = 1 and by choosing for ρ̃ in (4.3a) the estimate given by Remark 3.2, i.e.,

ρ̃ =
{ |α|e−T η0

1−|α|e−T η0
, Backward-Euler,

|α|
1−|α| , Trapezoidal Rule.

(4.6a)

3 According to [18, Section 5], the communication cost for the parallel implementation of FFT is negligible.
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Fig. 6 Speedup of the WRmethod in the worst case by letting c = 1 and choosing (4.6a) for ρ̃ in (4.5). The
tolerance ε is chosen as (4.6b) and α = 0.1 is fixed. For the Trapezoidal rule there is only one line in each
subfigure, because the ρ̃ is independent of η0. Left: Δt = 2−8 and T varies; Right: T = 32 and Δt varies

For the tolerance ε, we set

ε =
⎧⎨
⎩

Δt
10 , Backward-Euler,

Δt2
10 , Trapezoidal Rule,

(4.6b)

which is sufficient to match the temporal discretization error in practice. With these
configurations and α = 0.1 and two values of η0, the speedup is plotted in Fig. 6. We
see that for N small (i.e., T small or Δt large) there is no speedup, while when N
becomes large the speedup increases at least linearly. For the Backward-Euler method,
if Δt is fixed and η0 > 0 the speedup increases superlinearly as T increases. This is
because the convergence factor ρ̃ decreases (and thus the quantity K defined by (4.3a)
decreases) as T increases.

5 Convergence analysis for nonlinear problems

We now analyze the convergence properties of the WR method (1.2) in the nonlinear
case. We assume that the function f satisfies the one-sided Lipschitz condition (1.6).
To control the length of this paper, we only perform such a convergence analysis at
the continuous level. Convergence at the discrete level can be analyzed similarly.

Theorem 5.1 Let {uk}k≥1 be the functions generated by the WR method (1.2), where
|α| < 1 and the nonlinear function f satisfies the one-sided Lipschitz condition (1.6)
with some constant L ≥ 0. Then, the error function ek(t) = uk(t) − u(t) satisfies

max
t∈[0,T ] ‖ek(t)‖2 ≤

( |α|e−LT

1 − |α|e−LT

)k

‖e0(0)‖2. (5.1)
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Proof From (1.1) and (1.2), we have

{
ėk = f (t, uk) − f (t, u), t ∈ (0, T ),

ek(0) = αek(T ) − αek−1(T ).
(5.2)

For the Euclidean inner product, it holds for any differentiable function v(t) ∈ R
m

that ⎧⎨
⎩

d‖v(t)‖22
dt = 2〈v̇(t), v(t)〉

d‖v(t)‖22
dt = 2‖v(t)‖2 d‖v(t)‖2

dt

⇒ 〈v̇(t), v(t)〉 = ‖v(t)‖2 d‖v(t)‖2
dt

.

Applying this relation to the differential equation in (5.2) gives

〈ėk(t), ek(t)〉 = ‖ek(t)‖2 d‖ek(t)‖2
dt

= 〈 f (t, uk) − f (t, u), uk − u〉, t ∈ (0, T ).

Then, by using the one-sided Lipschitz condition (1.6) we have

d‖ek(t)‖2
dt

≤ −L‖ek(t)‖2, t ∈ (0, T ). (5.3)

Integrating this differential equation from 0 to T and using the periodic-like con-
dition in (5.2), we get ‖ek(T )‖2 ≤ e−LT ‖ek(0)‖2 and ‖ek(0)‖2 ≤ |α|‖ek(T )‖2 +
|α|‖ek−1(T )‖2. Hence, by using the first result twice we have

‖ek(0)‖2 ≤ |α|e−LT ‖ek(0)‖2 + |α|e−LT ‖ek−1(0T )‖2,

which together with L ≥ 0 gives

‖ek(0)‖2 ≤ |α|e−LT

1 − |α|e−LT
‖ek−1(0)‖2. (5.4)

From (5.3), we havemaxt∈[0,T ] ‖ek(t)‖2 ≤ ‖ek(0)‖2 and this together with (5.4) gives
(5.1). ��

6 Numerical results

In this section, we present numerical results to illustrate our convergence analysis of
the proposedWRmethod (1.2). In the first example, we consider the transmission line
circuits studied in [14]. This is a linear ODE system with wave property, because the
imaginary parts of the eigenvalues of the coefficient matrix are much larger than the
real parts. The second example is the PLATE problem, which is a linear PDE in 2-D. In
the last example we consider the 1-D Brusselator reaction-diffusion equation, which
is a typical nonlinear dynamical system consisting of two coupled PDEs. The PLATE
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Fig. 7 Illustration of the transmission line circuit studied in [14], where {x j }m
j=1 denote the nodal voltages

problem and the Brusselator problem are members of the ‘twelve test problems’ used
by Hairer and Wanner in their monograph [17] and they present severe challenges for
numerical computation.

For the WR iterations, all experiments start from a random initial guess and the
iteration stops when the error is less than 10−12, i.e.,

max
n

‖uk
n − uref

n ‖∞ ≤ 10−12, (6.1)

where {uref
n } denotes the reference solution computed by directly applying the temporal

discretization to the differential equations.

6.1 The transmission line circuits

Transmission lines (TLs) are fundamental circuit elements for the modeling of many
different structures and havemany different applications in practice. Here, we consider
the ladder-type TL circuits as the model problem that we want to solve (see Fig. 7 for
illustration).

The circuit equations corresponding to Fig. 7 are specified as modified nodal anal-
ysis equations of tri-diagonal structure and are given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1
L1

C2
L2

. . .

Lm−1
Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
.
.
.

ẋm−1
ẋm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Rs

1
−1 R1 1

−1 0 1
−1 R2 1

. . .
. . .

. . .

−1 Rm−1 1
−1 1

RL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
.
.
.

xm−1
xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f (t),

(6.2)

where f (t) is the input current source and {x j (t)} denote the nodal voltages as shown
in Fig. 7. More details about the TL circuits can be found in [14] and the references
cited therein.
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Fig. 8 Left: eigenvalues of the coefficient matrix A of the TL circuit equation (6.2) in the complex plane.
Right: for three sizes of the TL circuit the evolution of the voltage at the second nodal point

We use the following circuit elements considered in [14] for our numerical experi-
ments:

L j = 4.95 × 10−3

30
μH, C j = 0.63

30
pF, R j = 0.5 × 10−3

30
k, x j (0) = 0, j = 1, 2, . . . , m,

Rs = 0.02k, RL = 0.0005k, f (t) =
{
20t mA, t ∈ [0, 0.1],
2 mA, t ∈ [0.1, T ].

(6.3)

Let C be the diagonal matrix and D be the tri-diagonal matrix in (6.2). Then the
coefficient matrix of the circuit equation (6.2) is A = C−1D. In Fig. 8 on the left
we show σ(A) in the complex plane for three values of m and we see that as m
increases σ(A) approaches to the imaginary axis and therefore, mathematically, the
circuit equation (6.2) has similar properties as the wave equation form large (see Fig. 8
on the right). Moreover,

min
μ∈σ(A)

�(μ) ≥ 1

20
,∀m ∈ [10, 103]. (6.4)

With three values of α, we now show in Fig. 9 the measured convergence rate of
the WR method using the Backward-Euler method and the Trapezoidal rule. For each
α, we show two errors: ErrorDiag (solid line) denoting the diagonalization-based WR
iterations and ErrorDirect (dash-dot line) denoting the WR iterations implemented by
directly inverting the large-scale matrix (B1 ⊗ Ix + B2 ⊗ A) for each iteration.

We get four messages from Fig. 9. First, for both the Backward-Euler method
and the Trapezoidal rule, a smaller |α| results in a better convergence rate. This con-
firms our theoretical analysis for the convergence factor of the WR method very well,
because fromTheorem 3.2 and Theorem 3.3 we know that a smaller |α| gives a smaller
convergence factor. Second, the convergence rates of the WR method with α = 0.1
and α = −0.1 are almost the same. We also performed numerical experiments for
α = 0.3 and the convergence rate in this case is almost the same as that of α = −0.3.
This implies that for the TL circuit (6.2), α and −α have the same effect on the con-
vergence rate of the WR iterations. This point confirms our comments in Sect. 3.3:
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Fig. 10 The pointwise error between the WR iterate (after 7 iterations for the Backward-Euler method and
14 iterations for the Trapezoidal rule) and the reference solution {urefn } obtained by directly applying the
time-integrators to (6.2). Here, we use α = 0.1 and the plotting for other values of α look similar

for wave equations changing the sign of α does not affect the convergence rate of
the WR method. Third, by comparing the left subfigure to the right one, we see that
the Backward-Euler method results in significantly faster convergence for the WR
method than the Trapezoidal rule does. This can be explained by using (6.4) and the
first result of (3.21). Last, it is clear that for these six experiments the error ErrorDiag
is very close to ErrorDirect and this implies that the diagonalization procedure does
not affect the convergence rate of the WR method. This point implies that the round-
off error is negligible and particularly this error is less than the tolerance 10−12. To
illustrate this, we show in Fig. 10 the pointwise error between the converged WR
iterate and the reference solution. We see that for both the direct implementation and
the diagonalization-based implementation the error between the convergedWR iterate
and the reference solution is close to machine precision.

In Fig. 11 we show the error of theWR iterations measured in practice and the error
predicted by the convergence factors ρ̃1 and ρ̃ 1

2
given in Theorems 3.2 and 3.3 . From

the top row, we see that for the Backward-Euler method the convergence factor ρ̃1 is
not sharp whenm is small and it becomes sharp whenm increases. For the Trapezoidal
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Fig. 11 For the transmission line circuit (6.2)–(6.3) with different values ofm, the errormeasured in practice
and the error predicted by the bound of the convergence factor. From left to right: m = 201, m = 501
and m = 1001. Top row: Backward-Euler method; Bottom row: Trapezoidal rule. Here, the parameter α is
α = 0.1

rule, from the bottom row we see that the convergence factor ρ̃ 1
2
is sharp for all these

three m.
We next show how the convergence behavior of the WR method depends on m, T

and Δt . To this end, with α = 0.1 we show in Fig. 12 the iteration number needed to
satisfy the tolerance (6.1) by varying one of these parameters and keeping the other two
fixed. Clearly, the results shown in Fig. 12 reveal that the convergence behavior of the
WR method is robust with respect to these three parameters. Here, we only consider
the case that theWRmethod is implemented by the diagonalization technique. For the
case of direct implementation, the plot looks similar. From the left and right subfigures,
we see that the WR methods using the Backward-Euler method and the Trapezoidal
rule both have robust convergence behavior with respect to m and Δt . The middle
subfigure is very interesting, since it shows that the WRmethod using the Trapezoidal
rule has a robust convergence behavior with respect to T , while the WRmethod using
Backward-Euler has a faster convergence behavior as T increases. All these numerical
results confirm the worst case estimate (3.21) very well; see Remark 3.2.

6.2 The PLATE problem

The PLATE problem is a linear and non-autonomous equation, which describes the
movement of a rectangular plate under the load of a car passing across it,

⎧⎪⎨
⎪⎩

∂2u
∂t2

+ φ ∂u
∂t + δΔ2u = f (x, y, t), (x, y, t) ∈ Ω × (0, T ),

∂nu(x, y, t) = 0,Δu(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ),

u(x, y, 0) = 0, ∂t u(x, y, 0) = 0, (x, y) ∈ Ω,

(6.5)
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Fig. 12 Dependence of the convergence behavior of the WR method (implemented by the diagonalization
technique) on the quantity m (left), T (middle) and Δt (right). Here we choose α = 0.1

where φ = 104, δ = 102, Ω = (0, 1)2 and ∂nu denotes the outer normal derivative.
We partition the space domain Ω with mesh-size Δx and denote the interior points
by {(x j , yk) : x j = jΔx, yk = kΔx, 1 ≤ j, k ≤ m}, where m = 1

Δx − 1. The
load f (x, y, t) is idealized by the sum of two Gaussian curves which move in the
x-direction and reside on ‘four wheels’,

f (x, y, t) =
{
200

(
e−5(t−x−2)2 + e−5(t−x−5)2

)
, if y = y2 or y4,

0, otherwise.
(6.6)

We first discretize the operator Δ2 by the centered finite difference formula with
Δx ,

Δ2 ≈ Q := (A1A2) ⊗ Ix + Ix ⊗ (A1A2),

A1 = 1

Δx2

⎡
⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎤
⎥⎥⎥⎥⎥⎦

m×m

, A2 = 1

Δx2

⎡
⎢⎢⎢⎢⎢⎣

−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎤
⎥⎥⎥⎥⎥⎦

m×m

,
(6.7)

where Ix ∈ R
m×m is the identity matrix. Then, after lexicographically ordering the

spatial grid, we get the second-order differential system:

{
ü(t) + φu̇(t) + δQu(t) = f(t), t ∈ (0, T ),

u(0) = 0, u′(0) = 0,
(6.8)

where f(t) is the discrete version of f (x, y, t). Let ũ(t) = u′(t). Then, we can rewrite
(6.8) as
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Fig. 13 Distribution of the spectrum of the matrix A defined by (6.9) for two values of the mesh-size Δx :
Δx = 1

10 (left) and Δx = 1
40 (right). For the first case ω = 0.428 and for the second case ω = 1.515

U̇(t) + AU(t) = F(t), U(t) :=
[
u(t)
ũ(t)

]
, A :=

[ −Ix

δQ φIx

]
, F(t) :=

[
0

f(t)

]
,

(6.9)

where Ix = Rm2×m2
is an identity matrix.

The spectrum σ(A) is distributed in the regionD(ω, η0) given by (1.5) with η0 = 0
and ω depending on Δx . In Fig. 13, we show the distribution of σ(A) for two values
of Δx : Δx = 1

10 (left) and Δx = 1
40 (right). The quantity ω corresponding to these

two Δx is ω = 0.428 and ω = 1.515. Therefore, for the former case the ODE system
(6.9) is nearly a SPD problem, while for the latter case it is nearly a wave problem.
This property leads to different convergence rates of the discreteWRmethod as shown
in Fig. 14. For Δx = 1

10 , from the top row we see that α = 0.2 and α = −0.2 result
in the same convergence rates for the WR method using the Trapezoidal rule, while
for the WR method using Backward-Euler the latter results in faster convergence.
For Δx = 1

40 , from the bottom row we see that α = 0.2 and α = −0.2 result in the
same convergence rates for both the Trapezoidal rule and the Backward-Euler method.
These numerical results confirm our discussion in Sect. 3.2.2.

We now show the dependence of the iteration numbers of the WR method on the
mesh parameter and the length of the time interval. To this end, we show in Fig. 15
the iteration number needed to reach the tolerance (6.1) when one parameter is fixed
and the other one varies. In particular, in the top row we fix T = 7 and vary Δx = Δt
from 2−3 to 2−8; in the bottom row we fix Δx = Δt = 1

50 and vary T from 2 to 128.
For the PLATE problem, the angle ω associated with the spectrum σ(A) approaches
π
2 as Δx decreases (see Fig. 13) and therefore for both the Backward-Euler method
and the Trapezoidal rule changing the sign of the parameter α does not affect the
convergence behavior of the WR method when Δx is small (see our discussion in
Sect. 3.2.2). This confirms the numerical results given in Fig. 15 on the top row very
well. Since 0 ∈ σ(A), we have η0 = minμ∈σ(A) �(μ) = 0 and thus from the worst
case estimate of the convergence factor given by (3.21) we know that the WR method
using the Trapezoidal rule and the Backward-Euler method has a robust convergence
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Fig. 14 Comparison of themeasured convergence rates of the twodiscreteWRmethods. Top row:Δx = 1
10 ;

bottom row: Δx = 1
40 ; left column: α = 0.2; right column: α = −0.2. Here, Δt = 1

50 and T = 7

behavior with respect to T . This prediction is confirmed by the numerical results
given in Fig. 15 in the bottom row. In particular, for the Backward-Euler method, by
comparing the middle subfigure in Fig. 12 to the top-right subfigure in Fig. 15 we see
that the parameter η0 has an important effect on the convergence behavior of the WR
method.

6.3 The Brusselator reaction–diffusion equation

At the end of this section, we consider the Brusselator reaction–diffusion equation

{
∂t u1 = 0.1∂xx u1 + u2

1u2 − 4.4u1 + f (x, t),

∂t u2 = 0.1∂xx u2 − u2
1u2 − 3.4u1,

(6.10a)

where x ∈ (0, 1) and t ∈ (0, T ). We use the following data

u1(x, 0) = 22x(1 − x)1.5, u2(x, 0) = 27x(1 − x)1.5,

u1(0, t) = u1(1, t) = 0, u2(0, t) = u2(1, t) = 0,

f (x, t) =
{
6, if (x − 0.3)2 ≤ 0.12 and t ≥ 1.1,

1, otherwise.

(6.10b)
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Fig. 15 For the semi-discrete PLATE problem (6.9), iteration number needed to reach the tolerance (6.1)
in four different situations. Top row: T = 7 is fixed and Δx = Δt varies from 2−3 to 2−8. Bottom row:
Δx = Δt = 1

50 is fixed and T varies from 2 to 128. Left column: α = 0.2; right column: α = − 0.2

We discretize the Laplacian ∂xx via the centered finite difference formula with mesh-
size Δx .

We implemented the WR iterations by using the nonlinear diagonalization tech-
nique described in Sect. 2.3, where the quasi-Newtonmethod is used as the inner solver
for each WR iteration. Similar to Fig. 15, we show in Fig. 16 the iteration number of
the WRmethod needed to satisfy the tolerance (6.1) in four situations. We see that for
nonlinear problems the convergence behavior of theWRmethod proposed in this paper
is still satisfactory. In particular, for both the Trapezoidal rule and the Backward-Euler
method, the iteration number is robust with respect to the mesh parameters (see Fig. 16
on the top row). Similar to the transmission line circuits considered in Sect. 6.1, for
Backward-Euler the WR method converges faster as T increases (see Fig. 16 in the
bottom row). A possible explanation is that the Brusselator reaction-diffusion equation
is dissipative and therefore the spectrum of the Jacobian of the semi-discrete system
of (6.10a) is distributed in a region D(ω, η0) with positive η0, i.e., η0 > 0. Hence,
the worst case estimate (3.21) implies that the WR method has a better convergence
behavior when T becomes larger. For the Trapezoidal rule, the convergence behavior
of the WR method is insensitive to T .
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Fig. 16 For the Brusselator equation (6.10a)–(6.10b), iteration number needed to reach the tolerance (6.1)
in four different situations. Top row: T = 10 is fixed and Δx = Δt varies from 2−4 to 2−9. Bottom row:
Δx = Δt = 1

128 is fixed and T varies from 2 to 128. Left column: α = 0.25; right column: α = − 0.25

7 Conclusions

We have proposed a WR method for solving initial-value problems in parallel. The
main idea lies in the simple observation that the initial condition u(0) = u0 can be
recovered through the periodic-like condition uk(0) = αuk(T )−αuk−1(T )+u0 upon
convergence. Each iteration of the WR method is to solve a differential equation with
periodic-like condition, for which the diagonalization technique proposed recently
[6,7,31] can be used. Such a technique yields a direct parallel-in-time solver and
was originally proposed to solve differential equations with initial conditions. In this
paper, we show that it is more suitable to solve differential equations with periodic-like
conditions.

The parameter α controls both the roundoff error arising from the diagonalization
procedure and the convergence rate of the WR method. We have made a thorough
analysis for the newWRmethod and we show that the roundoff error is proportional to
ε(2N + 1)max{|α|−2, |α|2} (with ε being the machine precision), and our numerical
results indicate that the roundoff error is negligible compared to the discretization
error in practice. Our numerical results also indicate that the diagonalization-based
WR method has the same convergence rate as the WR method implemented directly
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(without diagonalization). In particular, our analysis reveals a rich relationship between
the convergence factor: first, using Backward-Euler or the Trapezoidal rule as the
time-integrator, the WR method has a robust convergence rate with respect to the
discretization parametersΔt and/orΔx . Second, for linear problems u̇(t)+Au(t) = f̃
with σ(A) ⊆ D(ω, η0) the convergence factor of the WR method can be bounded

by |α|e−T η0

1−|α|e−T η0
, if the Backward-Euler method is used. For the Trapezoidal rule, the

convergence factor can be bounded by |α|
1−|α| . These two bounds hold for allω ∈ [0, π

2 ]
and are worst case estimates. Third, for the Trapezoidal rule the sign of α does not
affect the convergence rate, while for Backward-Euler a negative α is better in most
cases, i.e., ω ∈ [0, π

2 ) (for ω = π
2 the sign of α does not make any difference).
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Appendix

The main notations and symbols of this paper are listed in the following table.

A Coefficient matrix θ Linear θ -method (θ = 1 or θ = 1
2 )

T Length of time interval Δt Time step-size
N Number of time steps Δx Space mesh-size
m Dimension of IVP Cond(·) Condition number of a matrix
ω Opening angle of sector L Lipschitz constant
μ Eigenvalue of A ε Tolerance for WR iterations
η0 Minimal real part of μ(A) ε Machine precision
η η = η0T ρ Convergence factor (continuous)
η̃ η̃ = η0Δt ρ̃ Convergence factor (discrete)
α Parameter used in WR iteration It It ∈ R

N×N is an identity matrix
k Index of WR iteration Ix It ∈ R

m×m is an identity matrix
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