
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. A1510--A1540

A PARALLEL-IN-TIME BLOCK-CIRCULANT PRECONDITIONER
FOR OPTIMAL CONTROL OF WAVE EQUATIONS\ast 

SHU-LIN WU\dagger AND JUN LIU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we propose a new efficient preconditioner for iteratively solving the
large-scale indefinite saddle-point sparse linear system, which arises from discretizing the optimality
system in optimal control problems of wave equations with a one-shot second-order finite difference
scheme in both space and time. The proposed preconditioner can be implemented in a parallel-
in-time (PinT) manner via a carefully designed unitary diagonalization decomposition. Such an
explicit unitary diagonalization is rarely seen in the literature. We also analyze the eigenvalue
bounds of the preconditioned system, which are shown to be highly clustered around one. Moreover,
a simple splitting algorithm that alternates between a linear complementarity problem (LCP) and a
quasi-Newton iteration is discussed for handling the case with control constraints. Within the quasi-
Newton iteration, our proposed PinT preconditioner can be directly used in preconditioning the
Jacobian system of the same structure. Both 1D and 2D numerical examples are given to illustrate
the promising convergence performance of our proposed PinT preconditioner in comparison with a
recently proposed matching Schur complement (MSC) preconditioner.
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diagonalization, GMRES
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1. Introduction. The development of fast and robust preconditioners in Krylov
subspace solvers (e.g., GMRES) for solving optimization problems constrained by
time-dependent PDEs is a very active topic [6, 12, 29]. However, in the last few
decades, most of the related research in this direction has been concerned with the
optimal control problems with parabolic and elliptic PDEs; see, e.g., [1, 2, 42, 43,
44, 45, 50]. Much less work has been devoted to the optimal control problems with
(hyperbolic) wave equations; see [13, 18, 31, 32, 33, 34, 35, 37, 49, 56] and the refer-
ences therein. In this paper, we propose and analyze a new parallel-in-time (PinT)
preconditioner for solving such hyperbolic optimal control problems, which shows fast
convergence in numerical experiments.

Let \Omega \in \BbbR d with d \geq 1 be a bounded and open domain with Lipschitz boundary,
and let [0, T ] be the time window of interest with T > 0. We consider the following
distributed optimal control problem [36] of minimizing a tracking-type quadratic cost
functional:

(1.1a) min
y,u

\scrL (y, u) := 1

2
\| y  - g\| 2L2(\Omega \times (0,T )) +

\gamma 

2
\| u\| 2L2(\Omega \times (0,T )),
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A PinT PRECONDITIONER FOR WAVE OPTIMAL CONTROL A1511

subject to a linear wave equation with initial- and boundary-value conditions:

(1.1b)

\Biggl\{ 
ytt  - \Delta y = f + u in \Omega \times (0, T ), y = 0, on \partial \Omega \times (0, T ),

y(\cdot , 0) = y0, yt(\cdot , 0) = y1 in \Omega ,

where u \in L2 is the distributed control, g \in L2 is the desired tracking trajectory or
observation data, \gamma > 0 denotes the cost weight or regularization parameter, and f ,
y0, and y1 are the given functions. The existence, uniqueness, and regularity of the
solution for problem (1.1a)--(1.1b) are well established [36] under suitable assumptions
on the given data. Attributing to the strict convexity of the objective functional
\scrL and the linearity of the state equation, the optimal solution of (1.1a)--(1.1b) is
characterized by the following first-order necessary (and also sufficient) optimality
system:

(1.2)

\left\{         
ytt  - \Delta y  - 1

\gamma p = f in \Omega \times (0, T ), y = 0, on \partial \Omega \times (0, T ),

y(\cdot , 0) = y0, yt(\cdot , 0) = y1 in \Omega ,

ptt  - \Delta p+ y = g in \Omega \times (0, T ), p = 0, on \partial \Omega \times (0, T ),

p(\cdot , T ) = 0, pt(\cdot , T ) = 0 in \Omega ,

where we have eliminated the control variable u from the optimality condition \gamma u - p =
0 in (1.2), leading to a reduced optimality system regarding only y and p. Notice that
the state variable y evolves forward and the adjoint state p marches backward in time,
which implies that we may have to solve all the time steps all at once (instead of time
marching) in a one-shot discretization scheme. Such a one-shot scheme inevitably
leads to a large-scale indefinite sparse linear system, whose approximation solution
requires efficient iterative solvers with fast and robust convergence rates.

For iteratively solving such large-scale discretized linear systems by the Krylov
subspace methods, the design of an effective and efficient preconditioner plays a critical
role in reducing the overall computational cost. In particular, the development of a
preconditioner highly depends on the underlying discretization schemes in space and
time. Several discretization schemes for the optimal control of wave or hyperbolic
PDEs are studied in the literature [13, 18, 31, 49], but there are fewer works [26, 35, 37]
about the development of fast preconditioners. Numerical computation of such a
resulting indefinite optimality system from hyperbolic PDEs is especially difficult due
to the underlying Helmholtz-type operators with indefinite spectrum. On one hand,
the constraint preconditioner in [35] shows a mesh-independent convergence rate, but
its convergence rate deteriorates as the regularization parameter \gamma becomes smaller.
On the other hand, the matching-type Schur complement (MSC) preconditioner in [37]
has a parameter-robust spatial mesh-independent convergence rate, which, however,
mildly depends on the temporal mesh step size. In particular, it was mentioned in [37]
that the independence on the regularization parameter and both spatial and temporal
mesh step sizes seems to be impossible to achieve simultaneously. We strive to tackle
this seemingly impossible task and to at least get closer to partially fulfilling the
desired goal.

With the popularity of massively parallel processors, it becomes increasingly more
important to develop efficiently parallelizable numerical algorithms, such as domain
decomposition algorithms and PinT algorithms, for solving time-dependent PDEs.
In particular, the above-mentioned MSC preconditioner is not easily parallelized.
We point out that the traditional time-marching schemes are intrinsically sequential,
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A1512 SHU-LIN WU AND JUN LIU

which should be treated in a one-shot manner for better parallelization. Several all-
at-once (or one-shot) schemes were studied in [41], where the resulting block-Toeplitz
matrices are preconditioned by the corresponding Strang block-circulant matrices.
The numerical results reported in [41] indicate very clear mesh-independent conver-
gence rates. Some preliminary parallel numerical results given in [19] also show that
such PinT diagonalization techniques indeed bring considerable speedup in computa-
tion time. Several block-circulant preconditioners based on different finite difference
schemes in time were also developed in [19] for solving the wave equation. Such a
time parallel diagonalization technique was first introduced in [40], and some novel
modifications can be found in [53, 55], where the authors used this technique to im-
prove the speedup of parareal and multigrid reduction in time (MGRIT) algorithms
via a diagonalization-based coarse grid correction. Other PinT algorithms based on
the diagonalization technique can be found in [3, 38, 39]. In these works, the authors
studied the time-dependent PDEs---not the optimal control of time-dependent PDEs.
We refer the interested readers to [15] for a recent survey of the PinT algorithms1

and the books [7, 30] for general discussion on block-circulant preconditioners for
block-Toeplitz matrices.

Inspired by the idea in [19, 41] for solving time-dependent PDEs in a one-shot
manner, we propose a new PinT block-circulant preconditioner \scrP for treating the
optimality PDE system (1.2) discretized by a well-established all-at-once scheme.
Significantly different from the cases discussed in [19, 41], we have to solve a two-
by-two block matrix \scrM upon full discretization, which becomes more difficult to
diagonalize due to the coupled system. By exploiting the diagonal structure of the
two-by-two block matrix \scrP , we are able to find explicit formulas for its diagonalization
decomposition. More importantly, as one major contribution, we prove that the
derived diagonalization decomposition is optimal in the sense that the eigenvector
matrix is indeed unitary upon a scalar multiplication. We remark that the condition
number of the eigenvector matrix has a serious influence on the roundoff error of the
diagonalization procedure [16] and a unitary eigenvector matrix results in the minimal
roundoff error. For a general nonsymmetric matrix, it is challenging, if not impossible,
to achieve such minimal roundoff errors for its diagonalization decomposition. We
attribute this perfect unitary diagonalization to our used implicit finite difference
scheme in time that indeed admits a symmetric system reformulation. For instance,
those one-shot schemes discussed in [16] do not provide a unitary diagonalization,
which implies their nonunitary diagonalizations lead to larger roundoff errors.

By making use of the obtained unitary diagonalization decomposition and the
fast Fourier transform (FFT) for factorizing the involved circulant matrices, for any
input vector r, we can compute the preconditioning step \scrP  - 1r very efficiently via
the three-step diagonalization technique [40], which yields a direct parallel implemen-
tation across all time points. To support the observed very satisfactory numerical
results, we show that the preconditioned matrix has a very clustered spectrum, which
indicates a robust fast convergence rate of the preconditioned GMRES method. As
an important application, we also discussed the optimal control problems with control
constraint, for which we formulate the optimality system in the framework of a dy-
namic complementarity system [23]. Within this framework, we can directly reuse \scrP 
or its modification as an effective preconditioner for the chosen approximate Jacobian
matrix of the same structure.

1We also recommend the website http://parallel-in-time.org for further PinT algorithms and
applications.
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A PinT PRECONDITIONER FOR WAVE OPTIMAL CONTROL A1513

The rest of this paper is organized as follows. In section 2, we introduce the
used finite difference discretization of the optimality system and propose our PinT
preconditioner with necessary details regarding its parallel implementation based on
a special unitary diagonalization decomposition. The estimated roundoff error due
to the direct diagonalization technique is also discussed. In section 3, we estimate
the spectrum of the preconditioned matrix. We then show in section 4 an application
of the PinT preconditioner for the optimal control problem with boxed control con-
straint. Numerical results are presented in section 5, and some concluding remarks
are given in section 6. Throughout this paper, we denote by \sansT and \ast the (real) trans-
pose and complex conjugate transpose of a matrix (vector), respectively. For any
two vectors v = (v1, . . . , vm)\sansT and w = (w1, . . . , wm)\sansT , the inequalities 0 \leq v and
w \geq 0 should be understood componentwise. The complementarity operator \bot is also
defined componentwise, i.e., v \bot w if and only if vjwj = 0 for all j = 1, 2, . . . ,m. For
brevity, we will also use the conventional notation 0 \leq v \bot w \geq 0, which is equivalent
to 0 \leq v, w \geq 0, and v \bot w. For any diagonal matrix D = diag(d1, d2, . . . , dm), its
square root

\surd 
D is also defined componentwise, i.e.,

\surd 
D = diag(

\surd 
d1,

\surd 
d2, . . . ,

\surd 
dm).

2. A new PinT preconditioner. Given two positive integers Nx and Nt, we
define the mesh step sizes \tau = T/Nt and h = 1/(Nx + 1). We partition the time
interval [0, T ] uniformly by time points \{ tn\} Nt

n=0 with tn = n\tau . Let \Delta h be the second-
order accurate discrete matrix approximation of the Laplacian operator \Delta in (1.2)
obtained by using the finite difference method (e.g., central difference) or the finite
element method (e.g., P1 element) with the given zero Dirichlet boundary condition.
In particular, we will focus on studying an implicit leap-frog finite difference scheme
established in [35], which fully discretizes (1.2) according to

Yn+1  - 2Yn + Yn - 1

\tau 2
 - \Delta h

Yn+1 + Yn - 1

2
 - 1

\gamma 
Pn = Fn, n = 1, 2, . . . , Nt  - 1,

Pn+1  - 2Pn + Pn - 1

\tau 2
 - \Delta h

Pn+1 + Pn - 1

2
+ Yn = Gn, n = 1, 2, . . . , Nt  - 1,

(2.1a)

where Yn and Pn are lexicographic ordered vectors collecting the approximate solu-
tions of y(\cdot , tn) and p(\cdot , tn) over all the space grids. Similar notations also apply to Fn

and Gn. The initial conditions are approximated by using Taylor expansions together
with the governing equations in (1.2):

Y0 = vec(y0),

\biggl( 
1 - \tau 2\Delta h

2

\biggr) 
Y1 = vec(y0) + \tau vec(y1) +

\tau 2

2

\biggl( 
F0 +

1

\gamma 
P0

\biggr) 
,

PNt
= vec(0),

\biggl( 
1 - \tau 2\Delta h

2

\biggr) 
PNt - 1 =

\tau 2

2
( - YNt

+GNt
),

(2.1b)

where vec(\cdot ) denotes the lexicographic ordering vectorization of the corresponding
function values over all the space grids. Using the Kronecker product notations, the
above scheme can be formulated into a sparse linear system

(2.1c) \widehat \scrM \biggl[ 
yh
ph

\biggr] 
:=

\Biggl( \Biggl[ 
B1  - \tau 2 \^It

\gamma 

\tau 2 \v It B\sansT 
1

\Biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
B2

B\sansT 
2

\biggr] 
\otimes \Delta h

\Biggr) \biggl[ 
yh
ph

\biggr] 
=

\biggl[ 
fh
gh

\biggr] 
,
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A1514 SHU-LIN WU AND JUN LIU

where \^It = diag( 12 , 1, . . . , 1),
\v It = diag(1, . . . , 1, 1

2 ) \in \BbbR Nt\times Nt , Ix \in \BbbR Nx\times Nx is an
identity matrix,

fh = \tau 2

\left[       
1
2F0 + Y1/\tau + Y0/\tau 

2

F1  - (Ix/\tau 
2  - 1

2\Delta h)Y0

F2

...
FNt - 1

\right]       , gh = \tau 2

\left[       
G1

G2

...
GNt - 1
1
2GNt

\right]       , yh =

\left[       
Y1

Y2

...
YNt - 1

YNt

\right]       , ph =

\left[       
P0

P1

...
PNt - 2

PNt - 1

\right]       ,

and

B1 =

\left[       
1
 - 2 1
1  - 2 1

. . .
. . .

. . .

1  - 2 1

\right]       , B2 =

\left[       
1
0 1
1 0 1

. . .
. . .

. . .

1 0 1

\right]       .(2.2)

Notice that B1, B2 \in \BbbR Nt\times Nt are Toeplitz matrices representing the time discretiza-
tion scheme. By letting \~yh =

\surd 
\gamma yh and \~fh =

\surd 
\gamma fh, we can diagonally rescale the

above system (2.1c) to get

\scrM 
\biggl[ 
\~yh
ph

\biggr] 
:=

\biggl[ \biggl( \biggl[ \surd 
\gamma It

It

\biggr] 
\otimes Ix

\biggr) \widehat \scrM \biggl( \biggl[ It\surd 
\gamma 

It

\biggr] 
\otimes Ix

\biggr) \biggr] \biggl[ 
\~yh
ph

\biggr] 
=

\biggl[ 
\~fh
gh

\biggr] 
,

with

\scrM =

\Biggl[ 
B1  - \tau 2 \^It\surd 

\gamma 
\tau 2 \v It\surd 

\gamma B\sansT 
1

\Biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
B2

B\sansT 
2

\biggr] 
\otimes \Delta h

=

\Biggl[ 
B1 \otimes Ix  - \tau 2

2 B2 \otimes \Delta h  - \tau 2 \^It\surd 
\gamma 

\tau 2 \v It\surd 
\gamma B\sansT 

1 \otimes Ix  - \tau 2

2 B\sansT 
2 \otimes \Delta h

\Biggr] 
.

(2.3)

Based on the above discussion, we propose the following block-circulant precondi-
tioner:

(2.4) \scrP :=

\Biggl[ 
C1  - \tau 2It\surd 

\gamma 
\tau 2It\surd 

\gamma C\sansT 
1

\Biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
C2

C\sansT 
2

\biggr] 
\otimes \Delta h,

where the Toeplitz matrices B1 and B2 within \scrM are replaced by the Strang circulant
matrices C1 and C2:

C1 =

\left[       
1 1  - 2
 - 2 1 1
1  - 2 1

. . .
. . .

. . .

1  - 2 1

\right]       , C2 =

\left[       
1 1 0
0 1 1
1 0 1

. . .
. . .

. . .

1 0 1

\right]       .(2.5)

and the diagonal matrices \^It and \v It are replaced by the identity matrix It \in \BbbR Nt\times Nt .
We remark that replacing \v It and \^It by the identity matrix It is necessary, since
otherwise we cannot easily explicitly diagonalize \scrP as needed in the efficient PinT
implementation. As to be further explained below, there are two advantages of pre-
conditioning \scrM by \scrP : (1) the PinT implementation of \scrP  - 1r (with r being an input
vector); and (2) the highly clustering of the complex eigenvalues of the nonsymmetric
preconditioned matrix \scrP  - 1\scrM .
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A PinT PRECONDITIONER FOR WAVE OPTIMAL CONTROL A1515

2.1. PinT implementation with diagonalization. We first explain the PinT
implementation details of computing the preconditioning step \scrP  - 1r. The starting
point is the spectral diagonalization of the circulant matrices C1,2: according to [5]
the matrices C1,2 can be diagonalized as C1,2 = \BbbF \ast \Lambda 1,2\BbbF , where \BbbF is the discrete
Fourier matrix defined by

\BbbF =
1\surd 
Nt

\bigl[ 
\omega (j - 1)(k - 1)

\bigr] Nt

j,k=1
, \omega = e

2\pi i
Nt , i :=

\surd 
 - 1,(2.6)

and \Lambda 1,2 = diag (\BbbF C1,2(:, 1)) with C1,2(:, 1) being the first column of C1,2. Hence, the

nth eigenvalue of C2 is 1 + \omega 2(n - 1) = 1 + e
4(n - 1)\pi i

Nt and C2 is invertible if the integer
Nt is not a multiple of 4. If we are assuming C2 is invertible, we have

(2.7) \scrP =

\left(  \left[  C1C
 - 1
2  - \tau 2(C - 1

2 )\sansT \surd 
\gamma 

\tau 2C - 1
2\surd 
\gamma C\sansT 

1 (C
 - 1
2 )\sansT 

\right]  \otimes Ix  - \tau 2

2

\biggl[ 
It

It

\biggr] 
\otimes \Delta h

\right)  
\underbrace{}  \underbrace{}  

=: \widetilde \scrP 

\biggl( \biggl[ 
C2

C\sansT 
2

\biggr] 
\otimes Ix

\biggr) 
.

Now, for any input vector r, we can compute s = \scrP  - 1r via

(2.8) \eta :=

\biggl[ 
\eta 1
\eta 2

\biggr] 
= \widetilde \scrP  - 1r, s =

\biggl[ 
(C - 1

2 \otimes Ix)\eta 1
((C - 1

2 )\sansT \otimes Ix)\eta 2

\biggr] 
.

Once \eta is calculated, we can compute s with high efficiency by FFT. More specifi-
cally, recall that vec(Z) denotes the vectorization of the matrix Z formed by stacking
its columns into a single column vector, and write \eta 1,2 = vec(Z1,2). Then, by the
Kronecker product property [20, p. 711], we have

(C - 1
2 \otimes Ix)\eta 1 = vec(Z1(C

 - 1
2 )\sansT ) = vec((C - 1

2 Z\sansT 
1 )

\sansT ) = vec((\BbbF \ast \Lambda  - 1
2 \BbbF Z\sansT 

1 )
\sansT )

and
((C - 1

2 )\sansT \otimes Ix)\eta 2 = vec(Z2C
 - 1
2 ) = vec(Z2\BbbF \ast \Lambda  - 1

2 \BbbF ),
where the multiplication of \BbbF and \BbbF \ast can be computed via FFT and inverse FFT,
respectively. Hence, the major computation lies in the first part, i.e., \eta = \widetilde \scrP  - 1r. We
now derive a special diagonalization of the matrix \widetilde \scrP in (2.7). Using the mixed-product

properties of Kronecker product, we can factorize \widetilde \scrP as

\widetilde \scrP =

\biggl( \biggl[ 
\BbbF \ast 

\BbbF \ast 

\biggr] 
\otimes Ix

\biggr) \left(      
\left[  \Lambda 1\Lambda 

 - 1
2  - \tau 2(\Lambda \ast 

2)
 - 1

\surd 
\gamma 

\tau 2\Lambda  - 1
2\surd 
\gamma 

\Lambda \ast 
1(\Lambda 

\ast 
2)

 - 1

\right]  
\underbrace{}  \underbrace{}  

=:\Lambda 

\otimes Ix  - \tau 2

2

\biggl[ 
It

It

\biggr] 
\otimes \Delta h

\right)      
\biggl( \biggl[ 

\BbbF 
\BbbF 

\biggr] 
\otimes Ix

\biggr) 
,

(2.9)

where we have used two obvious facts that C\sansT 
1,2 = C\ast 

1,2 = \BbbF \ast \Lambda \ast 
1,2\BbbF and \BbbF \ast \BbbF = It = \BbbF \BbbF \ast .

First, we note that the nth diagonal entries of \Lambda 1 and \Lambda 2 are explicitly given by

(\Lambda 1)n,n = 1 - 2e
2(n - 1)\pi i

Nt + e
4(n - 1)\pi i

Nt , (\Lambda 2)n,n = 1 + e
4(n - 1)\pi i

Nt , n = 1, . . . , Nt,

respectively, which leads to (applying Euler's formula ei\theta = cos \theta + i sin \theta )

(\Lambda 1\Lambda 
 - 1
2 )n,n =

1 - 2e
2(n - 1)\pi i

Nt + e
4(n - 1)\pi i

Nt

1 + e
4(n - 1)\pi i

Nt

= 1 - 2

e - 
2(n - 1)\pi i

Nt + e
2(n - 1)\pi i

Nt

= 1 - 1

cos
\Bigl( 

2(n - 1)\pi 
Nt

\Bigr) \in \BbbR .
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A1516 SHU-LIN WU AND JUN LIU

This implies the diagonal matrix \Lambda 1\Lambda 
 - 1
2 is in fact real, and hence \Lambda \ast 

1(\Lambda 
\ast 
2)

 - 1 =
(\Lambda 1\Lambda 

 - 1
2 )\ast = \Lambda 1\Lambda 

 - 1
2 .

Second, since \Lambda 1 and \Lambda 2 are diagonal matrices with complex entries, the diag-
onalization decomposition of the key two-by-two block matrix \Lambda is very similar to
the diagonalization of a two-by-two matrix. If \Lambda  - 1

2 exists, a routine calculation (see
Remark 2.1 below) yields the following diagonalization decomposition of \Lambda :

\Lambda =

\left[  \Lambda 1\Lambda 
 - 1
2  - \tau 2(\Lambda \ast 

2)
 - 1

\surd 
\gamma 

\tau 2\Lambda  - 1
2\surd 
\gamma \Lambda 1\Lambda 

 - 1
2

\right]  =

\biggl[ 
It S2

S1 It

\biggr] \biggl[ 
\Sigma 1

\Sigma 2

\biggr] \biggl[ 
It S2

S1 It

\biggr]  - 1

=: S\Sigma S - 1,(2.10)

where S1 =
\sqrt{} 
 - \Lambda \ast 

2\Lambda 
 - 1
2 , S2 =  - 

\sqrt{} 
 - (\Lambda \ast 

2)
 - 1\Lambda 2,\Sigma 1 = \Lambda 1\Lambda 

 - 1
2 + \Gamma , \Sigma 2 = \Lambda 1\Lambda 

 - 1
2  - \Gamma 

with \Gamma = i \tau 
2

\surd 
\gamma | \Lambda 

 - 1
2 | . We emphasize that such a spectral decomposition (2.10) of \Lambda 

is not unique, and its applicability highly depends on the condition number of the
eigenvector matrix S and the operation cost of computing S - 1v. The next theorem
shows that the proposed factorization (2.10) of the matrix \Lambda is optimal in the sense
that Cond2(S) = 1. This nice property only depends on the used finite difference
discretization scheme in time.

Theorem 2.1. Letting S = [ It S2

S1 It
] with S1 and S2 being the matrices given by

(2.10), it holds that 1\surd 
2
S is a unitary matrix and thus Cond2(S) = 1.

Proof. Given S1 =
\sqrt{} 

 - \Lambda \ast 
2\Lambda 

 - 1
2 and S2 =  - 

\sqrt{} 
 - (\Lambda \ast 

2)
 - 1\Lambda 2 as in (2.10), we clearly

have

S1 + S\ast 
2 =

\sqrt{} 
 - \Lambda \ast 

2\Lambda 
 - 1
2  - 

\sqrt{} 
 - \Lambda  - 1

2 \Lambda \ast 
2 = 0, S\ast 

1 + S2 = (S1 + S\ast 
2 )

\ast = 0,

and

S1S
\ast 
1 =

\sqrt{} 
\Lambda \ast 
2\Lambda 

 - 1
2 \Lambda 2(\Lambda \ast 

2)
 - 1 =

\sqrt{} 
It = It, S2S

\ast 
2 =

\sqrt{} 
(\Lambda \ast 

2)
 - 1\Lambda 2\Lambda 

 - 1
2 \Lambda \ast 

2 =
\sqrt{} 

It = It.

Hence,

SS\ast =

\biggl[ 
It S2

S1 It

\biggr] \biggl[ 
It S\ast 

1

S\ast 
2 It

\biggr] 
=

\biggl[ 
It + S2S

\ast 
2 S\ast 

1 + S2

S1 + S\ast 
2 It + S1S

\ast 
1

\biggr] 
=

\biggl[ 
It + S2S

\ast 
2 0

0 It + S1S
\ast 
1

\biggr] 
= 2

\biggl[ 
It 0
0 It

\biggr] 
,

which implies both 1\surd 
2
S and 1\surd 

2
S\ast are unitary and hence S - 1 = 1

2S
\ast . This also shows

that

Cond2(S) := \| S\| 2\| S - 1\| 2 =
\surd 
2

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
2
S

\bigm\| \bigm\| \bigm\| \bigm\| 
2

1\surd 
2

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
2
S\ast 
\bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
2
S

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
2
S\ast 
\bigm\| \bigm\| \bigm\| \bigm\| 
2

= 1,

where we have used the fact that \| 1\surd 
2
S\| 2 = \| 1\surd 

2
S\ast \| 2 = 1.

Let V = [ \BbbF 
\ast 

\BbbF \ast ]S. From (2.9) and (2.10) we have

\widetilde \scrP = (V \otimes Ix)

\biggl( \biggl[ 
\Sigma 1

\Sigma 2

\biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
It

It

\biggr] 
\otimes \Delta h

\biggr) 
(V  - 1 \otimes Ix).(2.11)
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Since \BbbF is unitary and S - 1 = 1
2S

\ast , there holds

V  - 1 =

\biggl( \biggl[ 
\BbbF \ast 

\BbbF \ast 

\biggr] 
S

\biggr)  - 1

= S - 1

\biggl[ 
\BbbF 

\BbbF 

\biggr] 
=

1

2
S\ast 
\biggl[ 
\BbbF 

\BbbF 

\biggr] 
=

1

2

\biggl( \biggl[ 
\BbbF \ast 

\BbbF \ast 

\biggr] 
S

\biggr) \ast 

=
1

2
V \ast .

With the decomposition (2.11), the vector \eta = \widetilde \scrP  - 1r in (2.8) can be computed via
the following three steps:

(2.12)

Step (a) g = (V  - 1 \otimes Ix)r =

\biggl( 
1

2
V \ast \otimes Ix

\biggr) 
r,

Step (b)

\biggl( 
\sigma nIx  - \tau 2

2
\Delta h

\biggr) 
wn = gn, n = 1, 2, . . . , 2Nt,

Step (c) \eta = (V \otimes Ix)w,

where g = [g\sansT 1 , . . . , g
\sansT 
2Nt

]\sansT , w = [w\sansT 
1 , . . . , w

\sansT 
2Nt

]\sansT , and \sigma n denotes the nth diagonal

entry of \Sigma = [\Sigma 1

\Sigma 2
]. Step (a) and Step (c) can be implemented efficiently (via FFT)

by utilizing the special structure of the matrix V . Step (b) consists of 2Nt independent
shifted linear systems with (complex) symmetric coefficient matrices, which can be
solved in a highly parallel manner. In particular, each system can be approximately
solved by the fast multigrid method [54] or the domain decomposition method. Fast
iterative solvers for Step (b) deserve further investigation. The three-step procedure
in (2.12) is the so-called diagonalization technique [16, 17, 19, 40, 41, 55]. This paper
contributes to successfully extending such a diagonalization technique for solving a
single PDE to handle the optimality PDE system arising from the optimal control of
wave equations.

Remark 2.1. Let E1,2,3 \in \BbbC Nt\times Nt be diagonal matrices and E = [E1 E2

E3 E1
]. If E2

and E3 are invertible, we can factorize E as

E = S

\biggl[ 
E1 + E2S1

E1 + E3S2

\biggr] 
S - 1, with S =

\biggl[ 
It S2

S1 It

\biggr] 
,

where S1 =
\sqrt{} 
E - 1

2 E3, S2 =  - 
\sqrt{} 
E2E

 - 1
3 . To verify this factorization, it is sufficient to

show \biggl[ 
E1 + E2S1 E2 + E1S2

E3 + E1S1 E1 + E3S2

\biggr] 
= ES

= S

\biggl[ 
E1 + E2S1

E1 + E3S2

\biggr] 
=

\biggl[ 
E1 + E2S1 E1S2 + E3S

2
2

E1S1 + E2S
2
1 E1 + E3S2

\biggr] 
,

which is true since E2S
2
1 = E3 and E3S

2
2 = E2 by the choice of S1 and S2. Moreover,

S is invertible since

S =

\biggl[ 
It S2

S1 It

\biggr] 
=

\left[  It  - 
\sqrt{} 
E2E

 - 1
3\sqrt{} 

E - 1
2 E3 It

\right]  =

\Biggl[ 
It 0\sqrt{} 

E - 1
2 E3 It

\Biggr] \Biggl[ 
It  - 

\sqrt{} 
E2E

 - 1
3

0 2It

\Biggr] 
,

where we used the fact that E - 1
2 E3E2E

 - 1
3 = E - 1

2 E2E3E
 - 1
3 = It as E2 and E3 are

diagonal matrices.
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A1518 SHU-LIN WU AND JUN LIU

2.2. Estimation of the roundoff error due to the diagonalization of \widetilde \bfscrP .
For any input vector r, let \eta be the exact solution of \widetilde \scrP \eta = r and \widetilde \eta be the approxi-
mate numerical solution obtained via the diagonalization procedure (2.12). Then, the
roundoff error arising from these three steps will cause difference between \eta and \widetilde \eta ,
which can be characterized by the so-called relative error. There exists a permutation
matrix \Pi (depending only on dimensions) such that \Pi (A\otimes B)\Pi \sansT = (B\otimes A) holds for

any two square matrices A and B [25]. Hence, the system \widetilde \scrP \eta = r can be reformulated

into (\Pi \widetilde \scrP \Pi \sansT )\Pi \eta = \Pi r, that is,

(2.13)

\left(  Ix \otimes 

\left[  C1C
 - 1
2  - \tau 2(C - 1

2 )\sansT \surd 
\gamma 

\tau 2C - 1
2\surd 
\gamma C\sansT 

1 (C
 - 1
2 )\sansT 

\right]   - \tau 2

2
\Delta h \otimes 

\biggl[ 
It

It

\biggr] \right)  \Pi \eta = \Pi r.

Assume that the matrix \Delta h is diagonalizable as \Delta h = \BbbV  - 1
h diag(\sigma (\Delta h))\BbbV h with \sigma (\Delta h)

being the eigenvalues of \Delta h. Then, by letting

(2.14) \widehat \eta =

\biggl( 
\BbbV h \otimes 

\biggl[ 
It

It

\biggr] \biggr) 
\Pi \eta , \widehat r =

\biggl( 
\BbbV h \otimes 

\biggl[ 
It

It

\biggr] \biggr) 
\Pi r,

the system (2.13) consists of Nx smaller systems corresponding to each eigenvalue
\lambda \in \sigma (\Delta h):
(2.15)

\widetilde \scrP \lambda \widehat \eta \lambda :=

\left(  \left[  C1C
 - 1
2  - \tau 2(C - 1

2 )\sansT \surd 
\gamma 

\tau 2C - 1
2\surd 
\gamma C\sansT 

1 (C
 - 1
2 )\sansT 

\right]   - \lambda \tau 2

2

\biggl[ 
It

It

\biggr] \right)  \widehat \eta \lambda = \widehat r\lambda , i.e., (V \Sigma (\lambda )V  - 1)\widehat \eta \lambda = \widehat r\lambda ,
where \widehat \eta \lambda and \widehat r\lambda are the corresponding sub-blocks of \widehat \eta and \widehat r, respectively, and

\Sigma (\lambda ) :=

\biggl[ 
\Sigma 1

\Sigma 2

\biggr] 
 - \lambda \tau 2

2

\biggl[ 
It

It

\biggr] 
.

In view of the above discussion, we can analyze the relative error for each eigenvalue
of the matrix \Delta h.

Theorem 2.2. Let \lambda \in \sigma (\Delta h) be an arbitrary eigenvalue of the space discrete

matrix \Delta h and \widehat \eta \lambda be the exact solution of \widetilde \scrP \lambda \widehat \eta \lambda = \widehat r\lambda (cf. (2.15)) with any input
vector \widehat r\lambda and \widetilde \eta \lambda be the approximate solution obtained via the diagonalization tech-
nique (2.12). Assume Step (b) of (2.12) is solved in a direct manner (e.g., by LU
factorization). Then, denoting the machine precision by \epsilon , we have

(2.16)
\| \widehat \eta \lambda  - \widetilde \eta \lambda \| 2

\| \widehat \eta \lambda \| 2 \leq \epsilon (4Nt + 1)Cond2(\Sigma (\lambda )) +O(\epsilon 2).

Proof. For (2.15), according to the backward error analysis in [20, pp. 122--126],
the solution obtained by the diagonalization technique (2.12) satisfies the perturbed
systems

(V + \delta V1)g\lambda = \widehat r\lambda , (\Sigma (\lambda ) + \delta \Sigma )w\lambda = g\lambda , (V  - 1 + \delta V2)\widetilde \eta \lambda = w\lambda ,

where \delta V1, \delta V2, and \delta \Sigma are the small perturbation of the matrices V , V  - 1, and \Sigma (\lambda ),
respectively. From [20, pp. 122--126], we have

(2.17a)
\| \delta V1\| 2 \leq 2\epsilon Nt\| V \| 2 +O(\epsilon 2), \| \delta V2\| 2 \leq 2\epsilon Nt\| V  - 1\| 2 +O(\epsilon 2),

\| \delta \Sigma (\lambda )\| \leq \epsilon \| \Sigma (\lambda )\| 2 +O(\epsilon 2),
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where the last inequality follows from the fact that \Sigma (\lambda ) is a diagonal matrix. Note

that solving (2.15) by diagonalization is equivalent to exactly solving ( \widetilde \scrP \lambda + \delta \widetilde \scrP \lambda )\widetilde \eta \lambda =\widehat r\lambda with a suitable perturbation \delta \widetilde \scrP \lambda . Moreover, from (2.15) we have

(2.17b) (V + \delta V1)(\Sigma (\lambda ) + \delta \Sigma )(V  - 1 + \delta V2)\widetilde \eta \lambda = \widehat r\lambda .
From (2.17a) and (2.17b), we can estimate \delta \widetilde \scrP \lambda as follows:

(2.18) \| \delta \widetilde \scrP \lambda \| 2 \leq \epsilon (4Nt + 1)\| V \| 2\| V  - 1\| 2\| \Sigma (\lambda )\| 2 +O(\epsilon 2).

From [16, Lemma 2.6], it holds that \| \widehat \eta \lambda  - \widetilde \eta \lambda \| 2

\| \widehat \eta \lambda \| 2
\leq Cond2( \widetilde \scrP \lambda )

\| \delta \widetilde \scrP \lambda \| 2

\| \widetilde \scrP \lambda \| 2
and by using (2.18)

we have

\| \widehat \eta \lambda  - \widetilde \eta \lambda \| 2
\| \widehat \eta \lambda \| 2 \leq \epsilon (4Nt + 1)\| V \| 2\| V  - 1\| 2\| \Sigma (\lambda )\| 2\| \widetilde \scrP  - 1

\lambda \| 2 +O(\epsilon 2)

= \epsilon (4Nt + 1)Cond2(V )\| \widetilde \scrP  - 1
\lambda \| 2\| \Sigma (\lambda )\| 2 +O(\epsilon 2).

(2.19)

Since V = [ \BbbF 
\ast 

\BbbF \ast ]S, \widetilde \scrP \lambda = V \Sigma (\lambda )V  - 1, and \| \BbbF \| 2 = \| \BbbF \ast \| 2 = 1, we have Cond2(V ) =
Cond2(S) = 1 and

\| \widetilde \scrP  - 1
\lambda \| 2 \leq \| S\Sigma  - 1(\lambda )S - 1\| 2 \leq Cond2(S)\| \Sigma  - 1(\lambda )\| 2 = \| \Sigma  - 1(\lambda )\| 2.

Substituting these inequalities into (2.19) gives (2.16).

The above theorem shows that the roundoff errors due to the diagonlization steps
(2.12) only grow linearly with respect to Nt, where the other factor Cond2(\Sigma (\lambda ))

corresponds to the unavoidable condition number of \widetilde \scrP itself. For any matrix P , its
spectral factorization P = UDU - 1 is not unique, where D and U are, respectively, the
(diagonal) eigenvalue matrix and the eigenvector matrix. For any invertible diagonal

matrix \widetilde D it holds that P = (U \widetilde D)D(U \widetilde D) - 1. Hence, \widetilde U = U \widetilde D is another eigenvector
matrix. Therefore, a different spectral factorization leads to a different condition
number of the eigenvector matrix, but it gives the same diagonal eigenvalue matrix
D. In particular, the factor Cond2(\Sigma (\lambda )) in (2.16) cannot be further improved.

3. Eigenvalue analysis of the proposed PinT preconditioner. For the
purpose of analysis, we will base our following eigenvalue analysis on an equivalent
but symmetric reformulation of the discretized system. Interestingly, we find that the
above diagonalization implementation cannot be directly transferred to the following
symmetric system. Upon swapping the two rows and dividing both sides by \tau 2, the
above system (2.3) can be rewritten as an indefinite symmetric saddle-point system

\scrA 
\biggl[ 

\~yh
ph

\biggr] 
:=

\Biggl[ 
1\surd 
\gamma 
\v Ixt L\sansT 

L  - 1\surd 
\gamma 
\^Ixt

\Biggr] \biggl[ 
\~yh
ph

\biggr] 
=

\biggl[ 
gh/\tau 

2

\~fh/\tau 
2

\biggr] 
=:

\biggl[ 
\=gh
\=fh

\biggr] 
,(3.1)

where \^Ixt = \^It \otimes Ix, \v Ixt = \v It \otimes Ix, and

L =
1

\tau 2

\biggl( 
B1 \otimes Ix  - \tau 2

2
B2 \otimes \Delta h

\biggr) 
=

1

\tau 2

\left[         

G 0 0 0 \cdot \cdot \cdot 0
 - 2Ix G 0 0 \cdot \cdot \cdot 0
G  - 2Ix G 0 \cdot \cdot \cdot 0

0
. . .

. . .
. . . 0 0

0 \cdot \cdot \cdot G  - 2Ix G 0
0 0 \cdot \cdot \cdot G  - 2Ix G

\right]         

(3.2)
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A1520 SHU-LIN WU AND JUN LIU

with G = Ix  - \tau 2

2 \Delta h. The proposed preconditioner in (2.4) corresponds to the fol-
lowing symmetric indefinite preconditioner (here \BbbP is used only for the purpose of
eigenvalue analysis):

\BbbP :=

\Biggl[ 
1\surd 
\gamma Ixt K\sansT 

K  - 1\surd 
\gamma Ixt

\Biggr] 
,(3.3)

where \v Ixt and \^Ixt in \scrA are replaced by Ixt = It \otimes Ix and the block Toeplitz matrix L
is replaced by a block Strang circulant matrix K given as

K =
1

\tau 2

\biggl( 
C1 \otimes Ix  - \tau 2

2
C2 \otimes \Delta h

\biggr) 
=

1

\tau 2

\left[         

G 0 0 \cdot \cdot \cdot G  - 2Ix
 - 2Ix G 0 0 \cdot \cdot \cdot G
G  - 2Ix G 0 \cdot \cdot \cdot 0

0
. . .

. . .
. . . 0 0

0 \cdot \cdot \cdot G  - 2Ix G 0
0 0 \cdot \cdot \cdot G  - 2Ix G

\right]         
.

(3.4)

When a preconditioned Krylov subspace method (such as GMRES) is used, its con-
vergence rate is often highly affected on the spectral distribution of the preconditioned
matrix \scrP  - 1\scrA , which will be explicitly estimated in the following subsections. Nev-
ertheless, we mention the well-known negative fact [21] that the convergence rate of
GMRES is not conclusively determined by the eigenvalues alone. To circumvent these
theoretical difficulties of GMRES, one may alternatively use the preconditioned MIN-
RES with a symmetric positive definite preconditioner; see [37] for related discussion
and [46, 47] for the interesting idea of symmetrizing a nonsymmetric Toeplitz matrix.
However, the generalization of such symmetrization techniques to our two-by-two
block indefinite saddle-point system is not straightforward, and the construction of
an effective symmetric positive definite preconditioner is also not trivial for our case.
We highlight that in our preconditioner \BbbP we have modified all four blocks of \scrA with-
out resorting to any approximation of Schur complements, which was not commonly
seen in the literature of preconditioning saddle-point systems.

We now proceed to estimate the eigenvalues of the preconditioned matrix \BbbP  - 1\scrA ,
that is,

\BbbP  - 1\scrA =

\Biggl[ 
1\surd 
\gamma Ixt K\sansT 

K  - 1\surd 
\gamma Ixt

\Biggr]  - 1 \Biggl[ 1\surd 
\gamma 
\v Ixt L\sansT 

L  - 1\surd 
\gamma 
\^Ixt

\Biggr] 
.(3.5)

By noticing K is a rank-2Nx perturbation of L, a standard low-rank perturbation
argument [8] can be used to show that at least 2(Nt  - 3)Nx eigenvalues of \BbbP  - 1\scrA are
exactly one, but the remaining 6Nx (nonunit) eigenvalues require further discussion
to characterize. To facilitate the following analysis, we slightly modify the diagonal
blocks of \BbbP into

(3.6) \widehat \BbbP =

\Biggl[ 
1\surd 
\gamma 
\v Ixt K\sansT 

K  - 1\surd 
\gamma 
\^Ixt

\Biggr] 
= \BbbP +

\Biggl[ 
1\surd 
\gamma eNt

e\sansT Nt
0

0  - 1\surd 
\gamma e1e

\sansT 
1

\Biggr] 
\otimes Ix

2
=: \BbbP + \BbbP 0,

which is a rank-2Nx perturbation of \BbbP . Here and hereafter, en is the nth column of
the identity matrix It. Hence, we have the following matrix product relation:

\BbbP  - 1\scrA = (\BbbP  - 1\widehat \BbbP )(\widehat \BbbP  - 1\scrA ) = \BbbP  - 1(\BbbP + \BbbP 0)(\widehat \BbbP  - 1\scrA ) = (\scrI + \BbbP  - 1\BbbP 0)(\widehat \BbbP  - 1\scrA ),
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where \scrI = [ It It
]\otimes Ix is an identity matrix. Moreover, the eigenvalues of \BbbP  - 1\widehat \BbbP satisfy

| \lambda (\BbbP  - 1\widehat \BbbP ) - 1| = | \lambda (\BbbP  - 1\BbbP 0)| \leq \| \BbbP  - 1\BbbP 0\| 2 \leq 1

2
,

where the last inequality will be shown below. From the matrix perturbation theory
[28, Chap. 21], this implies the spectrum of \BbbP  - 1\scrA is close to that of \widehat \BbbP  - 1\scrA . A typical

1D spectrum distribution (with \gamma = 10 - 6) of \BbbP  - 1\scrA , \BbbP  - 1\widehat \BbbP , and \widehat \BbbP  - 1\scrA is shown in
Figure 1, where we observe that the rectangular region containing all the eigenvalues
of \BbbP  - 1\scrA is only slightly different from that of \widehat \BbbP  - 1\scrA , which is relatively easier to
analyze. In the following two subsections, we will estimate the eigenvalues of \BbbP  - 1\widehat \BbbP 
and \widehat \BbbP  - 1\scrA , respectively.
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Fig. 1. The eigenvalue distribution of \BbbP  - 1\scrA (top row), \BbbP  - 1\widehat \BbbP (middle row), and \widehat \BbbP  - 1\scrA (bottom
row) for Example 1 with \gamma = 10 - 6, and (Nx, Nt) = (32, 33) (left) and (Nx, Nt) = (64, 65) (right).

3.1. Step I: Estimate the eigenvalues of \BbbP  - \bfone \widehat \BbbP . Since \BbbP is symmetric, its
singular values are given by the absolute value of all real eigenvalues. So we can
estimate the norm \| \BbbP  - 1\| 2 = 1/\sigma min(\BbbP ) by estimating the smallest eigenvalue, in
absolute value, of \BbbP . Let (\beta \in \BbbR , z = [ xy ] \not = 0) be an eigenpair of \BbbP with \| z\| 2 = 1,
that is, \Biggl[ 

1\surd 
\gamma Ixt K\sansT 

K  - 1\surd 
\gamma Ixt

\Biggr] \biggl[ 
x
y

\biggr] 
= \beta 

\biggl[ 
x
y

\biggr] 
.

Clearly, we have x \not = 0 and y \not = 0; otherwise z = 0 since K is nonsingular. Writing
both equations explicitly gives

1
\surd 
\gamma 
x+K\sansT y = \beta x, Kx - 1

\surd 
\gamma 
y = \beta y,

where the first equation gives ( 1\surd 
\gamma  - \beta )x =  - K\sansT y, and upon plugging this into the

second equation we get

(3.7) \beta 2y  - (KK\sansT + \gamma  - 1Ixt)y = 0.

Multiplying y\ast from the left side of (3.7) and then dividing both sides by y\ast y, we
obtain

\beta 2 =
y\ast (KK\sansT + \gamma  - 1Ixt)y

y\ast y
\geq \sigma 2

min(K) + \gamma  - 1 > 0,
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A1522 SHU-LIN WU AND JUN LIU

where \sigma min(K) > 0 denotes the smallest singular value of K. Clearly, it holds that
| \beta | \geq 

\sqrt{} 
\sigma 2
min(K) + \gamma  - 1, which implies \sigma min(\BbbP ) \geq 

\sqrt{} 
\sigma 2
min(K) + \gamma  - 1. Hence,

\| \BbbP  - 1\| 2 =
1

\sigma min(\BbbP )
\leq 1\sqrt{} 

\sigma 2
min(K) + \gamma  - 1

.

By noticing \| \BbbP 0\| 2 = 1
2
\surd 
\gamma , we therefore get

\| \BbbP  - 1\widehat \BbbP  - \scrI \| 2 = \| \BbbP  - 1\BbbP 0\| 2 \leq \| \BbbP  - 1\| 2\| \BbbP 0\| 2

\leq 1\sqrt{} 
\sigma 2
min(K) + \gamma  - 1

1

2
\surd 
\gamma 
=

1

2
\sqrt{} 

\gamma \sigma 2
min(K) + 1

\leq 1

2
,

which implies \BbbP  - 1\widehat \BbbP is not too far away from an identity matrix. Also, we have the
eigenvalue estimate

| \lambda (\BbbP  - 1\widehat \BbbP ) - 1| = | \lambda (\BbbP  - 1\widehat \BbbP  - \scrI )| \leq \| \BbbP  - 1\widehat \BbbP  - \scrI \| 2 \leq 1

2
,

which indicates the distances of those nonunit (including possible complex) eigenvalues

of \BbbP  - 1\widehat \BbbP from one are uniformly bounded by 1
2 (as clearly observed in Figure 1). This

justifies our claim that the spectrum of \BbbP  - 1\scrA is very close to that of \widehat \BbbP  - 1\scrA . Finally,
we summarize the above conclusions into the following theorem.

Theorem 3.1. For the above given matrices \BbbP in (3.5) and \widehat \BbbP in (3.6), there holds

| \lambda (\BbbP  - 1\widehat \BbbP ) - 1| \leq \| \BbbP  - 1\widehat \BbbP  - \scrI \| 2 \leq 1

2
.

3.2. Step II: Estimate the eigenvalues of \widehat \BbbP  - \bfone \bfscrA . Following the analysis
techniques in [52], we now discuss the eigenvalues of the modified preconditioned

system \widehat \BbbP  - 1\scrA . Let (\theta \in \BbbC , z = [ xy ] \not = 0) be an eigenpair of \widehat \BbbP  - 1\scrA with \| z\| 2 = 1, that
is, \Biggl[ 

1\surd 
\gamma 
\v Ixt L\sansT 

L  - 1\surd 
\gamma 
\^Ixt

\Biggr] \biggl[ 
x
y

\biggr] 
= \theta 

\Biggl[ 
1\surd 
\gamma 
\v Ixt K\sansT 

K  - 1\surd 
\gamma 
\^Ixt

\Biggr] \biggl[ 
x
y

\biggr] 
.

Writing both equations explicitly to get

1
\surd 
\gamma 
\v Ixtx+ L\sansT y = \theta 

\biggl( 
1
\surd 
\gamma 
\v Ixtx+K\sansT y

\biggr) 
, Lx - 1

\surd 
\gamma 
\^Ixty = \theta 

\biggl( 
Kx - 1

\surd 
\gamma 
\^Ixty

\biggr) 
,(3.8)

where the first equation gives

(1 - \theta )x =
\surd 
\gamma \v I - 1

xt (\theta K
\sansT  - L\sansT )y,

and upon plugging this into the second equation in (3.8), we get (after multiplying
both sides by

\surd 
\gamma )

\theta 2(\gamma K \v I - 1
xt K

\sansT + \^Ixt)y  - \theta (\gamma (K \v I - 1
xt L

\sansT + L\v I - 1
xt K

\sansT ) + 2\^Ixt)y + (\gamma L\v I - 1
xt L

\sansT + \^Ixt)y = 0.

Multiplying y\ast from the left side, we obtain a quadratic equation

a\theta 2  - b\theta + c = 0
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with coefficients a, b, and c given by

a = y\ast (\gamma K \v I - 1K\sansT +\^I)y, b = y\ast (\gamma (K \v I - 1L\sansT +L\v I - 1K\sansT )+2\^I)y, c = y\ast (\gamma L\v I - 1L\sansT +\^I)y.

Since the case \theta = 1 is trivial to discuss, we assume \theta \not = 1, which implies both x \not = 0
and y \not = 0. Hence, a > 0 and c > 0, but here b is not necessarily positive. By the
quadratic formula we have

\theta \pm =
b

2a
\pm 

\sqrt{} \biggl( 
b

2a

\biggr) 2

 - c

a
=: \Re (\theta )\pm i\Im (\theta ).

(1) If \Im (\theta ) = 0, then \theta is real and \theta \ast = \theta . Multiplying from the left side of the
equations in (3.8) by x\ast and y\ast , respectively, we get

1
\surd 
\gamma 
x\ast \v Ixtx+ x\ast L\sansT y = \theta 

\biggl( 
1
\surd 
\gamma 
x\ast \v Ixtx+ x\ast K\sansT y

\biggr) 
,

y\ast Lx - 1
\surd 
\gamma 
y\ast \^Ixty = \theta 

\biggl( 
y\ast Kx - 1

\surd 
\gamma 
y\ast \^Ixty

\biggr) 
,

which, upon subtracting the second equation from the conjugate of the first one, leads
to

1
\surd 
\gamma 
x\ast \v Ixtx+

1
\surd 
\gamma 
y\ast \^Ixty = \theta 

\biggl( 
1
\surd 
\gamma 
x\ast \v Ixtx+

1
\surd 
\gamma 
y\ast \^Ixty

\biggr) 
,

where we have used the facts (x\ast L\sansT y)\ast = y\ast Lx and (x\ast K\sansT y)\ast = y\ast Kx. This implies
\theta = 1 since x\ast \v Ixtx \geq 1

2\| x\| 
2
2 > 0 and y\ast \^Ixty \geq 1

2\| y\| 
2
2 > 0. Hence, all the real

eigenvalues must be exactly one. Moreover, the eigenvalue one of \widehat \BbbP  - 1\scrA = \scrI  - \widehat \BbbP  - 1(\widehat \BbbP  - 
\scrA ) actually has a multiplicity of at least (2Nt  - 4)Nx, since the difference \widehat \BbbP  - \scrA is
only of rank 4Nx [24].

(2) If \Im (\theta ) \not = 0, then b2  - 4ac < 0, and we obviously have the expression

\Re (\theta ) = b

2a
=

y\ast (\gamma (K \v I - 1
xt L

\sansT + L\v I - 1
xt K

\sansT ) + 2\^Ixt)y

2y\ast (\gamma K \v I - 1
xt K

\sansT + \^Ixt)y

and also

| \theta | 2 = \Re (\theta )2 + \Im (\theta )2 =
c

a
=

y\ast (\gamma L\v I - 1
xt L

\sansT + \^Ixt)y

y\ast (\gamma K \v I - 1
xt K

\sansT + \^Ixt)y
.

To simplify the analysis, we write

| \theta | 2 =
y\ast (\gamma L\v I - 1

xt L
\sansT + \^Ixt)y

y\ast (\gamma K \v I - 1
xt K

\sansT + \^Ixt)y
(3.9)

=
y\ast (\gamma L\v I - 1

xt L
\sansT + \^Ixt)y

y\ast (\gamma LL\sansT + Ixt)y\underbrace{}  \underbrace{}  
\rho LL

\cdot y\ast (\gamma LL\sansT + Ixt)y

y\ast (\gamma KK\sansT + Ixt)y\underbrace{}  \underbrace{}  
\rho KL

\cdot y\ast (\gamma KK\sansT + Ixt)y

y\ast (\gamma K \v I - 1
xt K

\sansT + \^Ixt)y\underbrace{}  \underbrace{}  
\rho KK

,

where we need to estimate three different positive ratios: \rho LL, \rho KL, and \rho KK . We
first notice that

y\ast (L\v I - 1
xt L

\sansT )y

y\ast (LL\sansT )y

v=L\sansT y
======

v\ast \v I - 1
xt v

v\ast v
\in [1, 2],

y\ast (KK\sansT )y

y\ast (K \v I - 1
xt K

\sansT )y

v=K\sansT y
======

v\ast v

v\ast \v I - 1
xt v

\in 
\biggl[ 
1

2
, 1

\biggr] 
,

y\ast \^Ixty

y\ast Ixty
\in 
\biggl[ 
1

2
, 1

\biggr] 
.
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It is easy to show the following simple inequalities (for any positive numbers c1, c2, d1, d2):

min

\biggl\{ 
c1
d1

,
c2
d2

\biggr\} 
\leq c1 + c2

d1 + d2
\leq max

\biggl\{ 
c1
d1

,
c2
d2

\biggr\} 
,

with which we obtain

1

2
\leq min

\Biggl\{ 
y\ast (L\v I - 1

xt L
\sansT )y

y\ast (LL\sansT )y
,
y\ast \^Ixty

y\ast Ixty

\Biggr\} 
\leq \rho LL \leq max

\Biggl\{ 
y\ast (L\v I - 1

xt L
\sansT )y

y\ast (LL\sansT )y
,
y\ast \^Ixty

y\ast Ixty

\Biggr\} 
\leq 2,

and

1

2
\leq min

\biggl\{ 
y\ast (KK\sansT )y

y\ast (K \v I - 1
xt K

\sansT )y
,
y\ast Ixty

y\ast \^Ixty

\biggr\} 
\leq \rho KK \leq max

\biggl\{ 
y\ast (KK\sansT )y

y\ast (K \v I - 1
xt K

\sansT )y
,
y\ast Ixty

y\ast \^Ixty

\biggr\} 
\leq 2.

Hence, it holds that
1

2

\surd 
\rho KL \leq | \theta | \leq 2

\surd 
\rho KL,

where the range of \rho KL is determined by the min/max eigenvalues of the matrix

(3.10) W := (\gamma KK\sansT + Ixt)
 - 1(\gamma LL\sansT + Ixt).

To summarize, we have obtained the following theorem for estimating the eigen-
values of \widehat \BbbP  - 1A.

Theorem 3.2. For the above given matrices \scrA in (3.1) and \widehat \BbbP in (3.6), let (\theta \in 
\BbbC , z = [ xy ] \not = 0) be any eigenpair of \widehat \BbbP  - 1\scrA . Then

(1) If \theta is real, then \theta = 1. The eigenvalue \theta = 1 has a multiplicity of at least
(2Nt  - 4)Nx.

(2) If \theta is not real, then we have the expression

| \theta | 2 =
y\ast (\gamma L\v I - 1

xt L
\sansT + \^Ixt)y

y\ast (\gamma K \v I - 1
xt K

\sansT + \^Ixt)y
.

Moreover, there holds

1

2

\surd 
\rho KL \leq | \theta | \leq 2

\surd 
\rho KL,

where \rho KL is bounded by the min/max eigenvalues of the matrix W given in
(3.10).

We can discuss more about the range of \rho KL. Clearly, it holds that

| \rho KL  - 1| =
\bigm| \bigm| \bigm| \bigm| y\ast (\gamma LL\sansT  - \gamma KK\sansT )y

y\ast (\gamma KK\sansT + Ixt)y

\bigm| \bigm| \bigm| \bigm| \leq \gamma 

\bigm| \bigm| \bigm| \bigm| y\ast (LL\sansT  - KK\sansT )y

y\ast y

\bigm| \bigm| \bigm| \bigm| \leq \gamma \| LL\sansT  - KK\sansT \| \infty .

In the 1D case, using a uniform mesh with \tau = 2h, it holds that \| G\| \infty = \| Ix  - 
\tau 2

2 \Delta h\| \infty = 1 + 2( \tau h )
2 = 9. Recall from (3.2) and (3.4) that

K = L+
1

\tau 2
R := L+

1

\tau 2

\left[       
0 \cdot \cdot \cdot 0 G  - 2Ix

0 \cdot \cdot \cdot 0 G
0 \cdot \cdot \cdot 0

. . .
...
0

\right]       ,D
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which implies

KK\sansT  - LL\sansT =

\biggl( 
L+

1

\tau 2
R

\biggr) \biggl( 
L+

1

\tau 2
R

\biggr) \sansT 

 - LL\sansT =
1

\tau 4
(\tau 2RL\sansT + \tau 2LR\sansT +RR\sansT ),

where

\tau 2RL\sansT + \tau 2LR\sansT =

\left[    
0 \cdot \cdot \cdot 0 G2  - 4G
0 0 \cdot \cdot \cdot 0 G2

0 0 0 \cdot \cdot \cdot 0

G2 0
.
.
.

. . .
.
.
.

 - 4G G2 0 \cdot \cdot \cdot 0

\right]    , RR\sansT =

\left[      
G2 + 4Ix  - 2G 0 \cdot \cdot \cdot 0

 - 2G G2 0 \cdot \cdot \cdot 0

0 0
. . .

. . . 0

0
.
.
.

. . .
. . . 0

0 0 0 \cdot \cdot \cdot 0

\right]      .

Hence, it is straightforward to show

\| LL\sansT  - KK\sansT \| \infty \leq 1

\tau 4
(\| G2 + 4Ix\| \infty + \|  - 2G\| \infty + \| G2\| \infty + \|  - 4G\| \infty )

\leq 1

\tau 4
(4 + 6\| G\| \infty + 2\| G\| 2\infty ) \leq 220

\tau 4
.

This implies that \rho KL (or the eigenvalues of W given by (3.10)) becomes closer to 1
as the regularization parameter \gamma \rightarrow 0, which predicts a faster GMRES convergence
rate with smaller \gamma for fixed mesh step sizes. However, according to this estimate with
a fixed \gamma , the eigenvalue distribution of W indeed gets worse as \tau becomes smaller,
which matches with the numerical observations (see Figure 2). Interestingly, a similar
connection between \gamma and \tau 4 was also observed in [37, Thm. 3.2], where the derived
eigenvalue upper bound becomes nonuniform when \tau 4 < \gamma , indicating the possibility
of a slower convergence rate with a very small \tau .

It also holds that

 - 1 <
 - y\ast (\gamma KK\sansT )y

y\ast (\gamma KK\sansT + Ixt)y
< \rho KL  - 1

and

\rho KL  - 1 <
y\ast (LL\sansT )y

y\ast (KK\sansT + \gamma  - 1Ixt)y
< min

\biggl\{ 
y\ast (LL\sansT )y

y\ast (KK\sansT )y
, \gamma \sigma 2

max(L)

\biggr\} 
,

which, however, does not lead to uniform bounds for \rho KL, since the eigenvalues of
(KK\sansT ) - 1LL\sansT are not uniformly bounded. Using the data in Example 1, a typical

eigenvalue distribution of W and \widehat \BbbP  - 1\scrA is shown in Figures 2 and 3, respectively.
As expected, the eigenvalues of W do not seem to be uniformly bounded as the
mesh is refined for a fixed \gamma . Nevertheless, the eigenvalues indeed become more
clustered around 1 as \gamma gets smaller. Numerically, we do observe very tight bounds
for the magnitude of | \theta | , which may explain the observed fast convergence rate of the
preconditioned GMRES solver with our proposed PinT preconditioner. However, it
remains open to prove such tight bounds for estimating | \theta | , which cannot be easily
achieved based on the spectrum information of (KK\sansT ) - 1LL\sansT .

As a further illustration, we also plotted in Figure 4 the nonunity eigenvalues
of (KK\sansT ) - 1LL\sansT , which seem to be highly clustered around 1, but they are not
uniformly bounded due to a few outliers. Such an observed highly clustered but
nonuniformly bounded spectrum is well known [7, 30] for block- (or two-level) circu-
lant type preconditioners, which, however, often show very fast convergence rates for
the preconditioned Krylov subspace solvers in practice.
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A1526 SHU-LIN WU AND JUN LIU

Fig. 2. The eigenvalue distribution of W given by (3.10) for Example 1 with different mesh
sizes (left: \gamma = 10 - 2; right: \gamma = 10 - 4).

Fig. 3. The absolute eigenvalue | \theta | distribution of \widehat \BbbP  - 1\scrA for Example 1 with different mesh
sizes (left: \gamma = 10 - 2; right: \gamma = 10 - 4).
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Fig. 4. The nonunity eigenvalue distribution of (KK\sansT ) - 1LL\sansT for Example 1 with different
mesh sizes.
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4. Application to the control constraint situation. In real-world applica-
tions, many PDE optimal control problems are equipped with boxed constraints of
the control variable, i.e.,

(4.1) ua \leq u(x, t) \leq ub in \Omega \times (0, T ),

where ua \leq ub are two given constants. For this kind of control-constrained problem,
the semismooth Newton iterations (or equivalently the primal-dual active set method)
together with the preconditioned Krylov subspace solvers (as inner loop) are the
mainstream method; see, e.g., [22, 27, 33]. At the kth semismooth Newton iteration,
we need to solve a linear system with coefficient matrix of the form

(4.2) \scrM k =

\Biggl[ 
B1  - \tau 2\chi k\surd 

\gamma 
\tau 2 \v It\surd 

\gamma B\sansT 
1

\Biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
B2

B\sansT 
2

\biggr] 
\otimes \Delta h,

where \v It is given in (2.1c), B1 and B2 are given in (2.2), and \chi k is a 0-1 binary
diagonal matrix due to the active/inactive control constraints. It is not easy to directly
apply our proposed block-circulant preconditioner to handle \scrM k. On one hand, if
we simply ignore \chi k and continue to use \scrP given by (2.4) as the preconditioner, the
preconditioned GMRES method performs poorly. On the other hand, if we keep \chi k as
a component of \scrP , there is no explicit formula available for the spectral decomposition
of \scrP . Hence, an alternative approach is needed for treating the control-constrained
case.

In this section, we propose a new algorithm to handle this kind of problem, where
the preconditioning technique proposed in section 2 can be used directly. First, we
represent the constraint ua \leq u \leq ub as

Qu+ q \geq 0, with Q =

\biggl[ 
1
 - 1

\biggr] 
, q =

\biggl[ 
 - ua

ub

\biggr] 
.

Then, according to the methodology developed in [23], the optimality condition of the
control problem (1.1a)--(1.1b) with constraint (4.1) can be formulated as

(4.3)

\left\{               

\gamma u - p - Q\sansT \mu = 0, 0 \leq \mu \bot Qu+ q \geq 0, in \Omega \times (0, T ),

ytt  - \Delta y = f + u in \Omega \times (0, T ), y = 0, on \partial \Omega \times (0, T ),

y(\cdot , 0) = y0, yt(\cdot , 0) = y1 in \Omega ,

ptt  - \Delta p+ y = g in \Omega \times (0, T ), p = 0, on \partial \Omega \times (0, T ),

p(\cdot , T ) = 0, pt(\cdot , T ) = 0 in \Omega ,

where \mu is the Lagrange multiplier of the control constraints and p is the adjoint state.
We can again eliminate the control variable u = \gamma  - 1(p + Q\sansT \mu ) and rewrite (4.3) as
follows:
(4.4)\left\{               

0 \leq \mu \bot \gamma  - 1Qp+ q + \gamma  - 1QQ\sansT \mu \geq 0 in \Omega \times (0, T ),

ytt  - \Delta y = f + \gamma  - 1(p+Q\sansT \mu ) in \Omega \times (0, T ), y = 0, on \partial \Omega \times (0, T ),

y(\cdot , 0) = y0, yt(\cdot , 0) = y1 in \Omega ,

ptt  - \Delta p+ y = g in \Omega \times (0, T ), p = 0, on \partial \Omega \times (0, T ),

p(\cdot , T ) = 0, pt(\cdot , T ) = 0 in \Omega .
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To solve (4.4) efficiently via a splitting algorithm, we make the following change of
variable:

(4.5) \mu = \gamma \phi ,

which transforms (4.4) to
(4.6)\left\{               

0 \leq \phi \bot \gamma  - 1Qp+ q +QQ\sansT \phi \geq 0 in \Omega \times (0, T ),

ytt  - \Delta y  - \gamma  - 1p = Q\sansT \phi + f in \Omega \times (0, T ), y = 0, on \partial \Omega \times (0, T ),

y(\cdot , 0) = y0, yt(\cdot , 0) = y1 in \Omega ,

ptt  - \Delta p+ y = g in \Omega \times (0, T ), p = 0, on \partial \Omega \times (0, T ),

p(\cdot , T ) = 0, pt(\cdot , T ) = 0 in \Omega .

Let \Phi n denote the lexicographic ordered column vector collecting the approximate
solutions of \phi (\cdot , tn) over all the space grids. Discretizing the above two PDEs in (4.6)
via the same scheme and notations used in section 2 gives

0 \leq \Phi n \bot \gamma  - 1QhPn + qh +QhQh
\sansT \Phi n \geq 0, n = 0, 1, 2, . . . , Nt  - 1,

\widehat \scrM \biggl[ 
yh
ph

\biggr] 
=

\biggl[ 
(\^It \otimes Qh

\sansT )\phi h + fh
gh

\biggr] 
,

(4.7)

where \phi h =
\bigl( 
\Phi \sansT 

0 ,\Phi 
\sansT 
1 , . . . ,\Phi 

\sansT 
Nt - 1

\bigr) \sansT 
, Qh = [ 1

 - 1 ]\otimes Ix, qh = [ - ua
ub

]\otimes (1, 1, . . . , 1)\sansT , and

\widehat \scrM =

\biggl[ 
L  - \gamma  - 1(\^It \otimes Ix)

(\v It \otimes Ix) L\top 

\biggr] 
, with L =

1

\tau 2
B1 \otimes Ix  - 1

2
B2 \otimes \Delta h.

The discretized problem (4.7) is a large-scale nonlinear algebraic system consisting of
a linear complementarity system (LCP) and a system of linear equations. Clearly, the
unconstrained case corresponds to vanishing LCP with \phi h = 0. We propose solving
(4.7) via the following splitting quasi-Newton iterations (k = 0, 1, . . . denotes the
iteration index):

0 \leq \Phi k+1
n \bot \gamma  - 1QhP

k
n + qh +QhQh

\sansT \Phi k+1
n \geq 0, n = 0, 1, 2, . . . , Nt  - 1,\biggl[ 

yk+1
h

pk+1
h

\biggr] 
=

\biggl[ 
ykh
pkh

\biggr] 
 - \scrJ  - 1rk, with rk := \widehat \scrM \biggl[ 

ykh
pkh

\biggr] 
 - 
\biggl[ 
(\^It \otimes Qh

\sansT )\phi k+1
h + fh

gh

\biggr] 
,

(4.8a)

where the approximate Jacobian matrix \scrJ is chosen as

\scrJ =

\biggl[ 
L  - \^It \otimes Ix

\v It \otimes Ix L\sansT 

\biggr] 
.(4.8b)

Since QhQ
\sansT 
h = [ 1  - 1

 - 1 1 ] \otimes Ix is a semipositive definite matrix, according to [9, pp. 4--
5, Chapter 1] the LCP in (4.8a) can be reformulated into the following least-norm
problem (for fixed k and n):
(4.9)

\Phi k+1
n = argmin

\bigl\{ 
\| z\| 2 : z \geq 0, \gamma  - 1QhP

k
n + qh +QhQ

\sansT 
hz \geq 0

\bigr\} 
, n = 1, 2, . . . , Nt,

which again can be solved efficiently via a quadratic programming solver (e.g., quadprog
in MATLAB). Other more specialized algorithms (e.g., the Newton-type method [14])
for solving LCPs can also be used.
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There are two advantages of the algorithm (4.8a). First, we can solve both the
linear algebraic system and the linear complementarity system in a PinT pattern.
Precisely, we can compute all the components of \phi k+1

h , i.e., \{ \Phi k+1
n \} Nt

n=1, simultane-
ously. Moreover, we can compute \scrJ  - 1rk by using our proposed PinT block-circulant
preconditioner. Second, as we will illustrate in Examples 3 and 4 of section 5, the
iteration (4.8a)--(4.8b) converges rapidly, and the convergence rate is very robust with
respect to the regularization and discretization parameters. We also want to mention
that the variable change (4.5) and the special choice of the Jacobian matrix \scrJ play
equally important roles in achieving the robust convergence of iteration (4.8a)--(4.8b).
Without (4.5) or (4.8b), the convergence rate deteriorates as the regularization param-
eter or the discretization parameter becomes small. However, a complete convergence
analysis of (4.8a)--(4.8b) requires further efforts, which is beyond the scope of our
current paper and will be left as future work.

5. Numerical examples. In this section, we provide several numerical results
for our proposed PinT preconditioner. Here, we mainly focus on the convergence
properties of the preconditioner, and parallel computation results will be given in the
near future. As given in (2.1a)--(2.1b), the optimality system (1.2) is discretized in
space using the central finite difference method and in time by the implicit leap-frog
finite difference scheme in [35], with a uniform mesh in both space and time. All
simulations are implemented using MATLAB on a Dell Precision Workstation with
Intel(R) Core(TM) i7-7700K CPU@4.2GHz and 32GB RAM. The CPU time (in sec-
onds) is estimated using the timing functions tic/toc. We remark that the reported
CPU times are based on one-time simulation, which may show some variance. We
employ the right-preconditioned GMRES solver (without restarts) provided by the
IFISS package [10, 11, 51] and choose a zero initial guess and a stopping tolerance
tol based on the reduction in relative residual norms. According to the error estimate
in [35], we will measure the discrete L\infty ((0, T );L2(\Omega )) error norms of the state and
adjoint state approximation as ey and ep, respectively, and then estimate the exper-
imental order of accuracy by calculating the logarithmic ratio of the approximation
errors between two successive refined meshes, i.e.,

R = log2

\biggl( 
ey(h, \tau )

ey(2h, 2\tau )

\biggr) 
or log2

\biggl( 
ep(h, \tau )

ep(2h, 2\tau )

\biggr) 
,

which should be close to 2 for a second-order accuracy in approximation errors. It
is worthwhile to mention that the GMRES solver without preconditioning would re-
quire a much greater number of iterations, which can easily exceed several thousands
even for the simple 1D case. For brevity, we choose to omit such results and fo-
cus on comparing our proposed PinT preconditioner with the state-of-the-art MSC
preconditioner.

Example 1. Let \Omega = (0, 1) and T = 2. We choose y0(x) = sin(\pi x), y1(x) = 0,

f =  - 1

\gamma 
sin(\pi x)(et  - eT )2,

and

g(x, t) = 2(2e2t  - eT+t) sin(\pi x) + \pi 2 sin(\pi x)(et  - eT )2 + sin(\pi x) cos(\pi t),

such that the exact solution is y(x, t) = sin(\pi x) cos(\pi t) and p(x, t) = sin(\pi x)(et - eT )2.
In Table 1, we report the required number of GMRES iterations (denoted by ``It"")

and CPU times for our proposed PinT preconditioner. The number of iterations is
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Table 1
Numbers of GMRES iterations and CPU times for Example 1 with our proposed PinT precon-

ditioner.

tol = 10 - 7 \gamma = 1 \gamma = 10 - 2 \gamma = 10 - 4 \gamma = 10 - 6 \gamma = 10 - 8

(Nx, Nt) It CPU It CPU It CPU It CPU It CPU
( 128, 129) 5 0.1 5 0.1 5 0.1 5 0.1 5 0.1
( 256, 257) 5 0.2 7 0.3 5 0.2 5 0.3 5 0.2
( 512, 513) 9 1.4 15 2.4 5 0.8 5 0.8 5 0.8
(1024,1025) 9 5.6 23 15.4 9 5.7 5 3.3 5 3.3

Table 2
Numbers of GMRES iterations and CPU times for Example 1 with the MSC preconditioner

(tol = 10 - 7).

tol = 10 - 7 \gamma = 1 \gamma = 10 - 2 \gamma = 10 - 4 \gamma = 10 - 6 \gamma = 10 - 8

(Nx, Nt) It CPU It CPU It CPU It CPU It CPU
( 128, 129) 6 0.1 11 0.2 14 0.2 11 0.2 3 0.1
( 256, 257) 6 0.2 11 0.3 18 0.6 17 0.5 4 0.1
( 512, 513) 6 0.7 11 1.3 20 2.5 26 3.4 10 1.2
(1024,1025) 5 2.3 10 4.6 21 10.4 38 21.8 19 9.2

Table 3
Comparison of error results for Example 1 with the PinT and MSC preconditioners with dif-

ferent \gamma .

tol = 10 - 7 Our PinT preconditioner The MSC preconditioner
\gamma (Nx, Nt) ey R ep R ey R ep R

1

( 128, 129) 3.5e-03 -- 8.3e-03 -- 3.5e-03 -- 8.3e-03 --
( 256, 257) 8.7e-04 2.0 2.1e-03 2.0 8.7e-04 2.0 2.1e-03 2.0
( 512, 513) 2.2e-04 2.0 5.3e-04 2.0 2.2e-04 2.0 5.3e-04 2.0
(1024,1025) 5.5e-05 2.0 1.3e-04 2.0 5.4e-05 2.0 1.4e-04 1.9

10 - 2

( 128, 129) 3.1e-02 -- 2.0e-03 -- 3.1e-02 -- 2.0e-03 --
( 256, 257) 7.7e-03 2.0 5.0e-04 2.0 7.7e-03 2.0 5.0e-04 2.0
( 512, 513) 1.9e-03 2.0 1.3e-04 2.0 1.9e-03 2.0 1.3e-04 2.0
(1024,1025) 4.9e-04 2.0 3.1e-05 2.0 5.1e-04 1.9 2.9e-05 2.1

10 - 4

( 128, 129) 5.5e-02 -- 4.0e-04 -- 5.5e-02 -- 4.0e-04 --
( 256, 257) 1.4e-02 2.0 1.0e-04 2.0 1.4e-02 2.0 1.0e-04 2.0
( 512, 513) 3.5e-03 2.0 2.5e-05 2.0 3.5e-03 2.0 2.5e-05 2.0
(1024,1025) 8.7e-04 2.0 6.3e-06 2.0 9.0e-04 2.0 6.5e-06 1.9

10 - 6

( 128, 129) 3.0e-01 -- 1.3e-04 -- 3.0e-01 -- 1.3e-04 --
( 256, 257) 7.8e-02 1.9 3.3e-05 1.9 7.7e-02 2.0 3.3e-05 1.9
( 512, 513) 2.0e-02 2.0 8.4e-06 2.0 2.0e-02 1.9 8.9e-06 1.9
(1024,1025) 4.9e-03 2.0 2.1e-06 2.0 4.8e-03 2.1 3.0e-06 1.6

10 - 8

( 128, 129) 8.9e-01 -- 2.5e-05 -- 8.8e-01 -- 2.3e-05 --
( 256, 257) 2.8e-01 1.7 8.9e-06 1.5 2.0e-01 2.2 5.9e-06 2.0
( 512, 513) 7.5e-02 1.9 2.6e-06 1.8 5.0e-02 2.0 2.0e-06 1.6
(1024,1025) 1.9e-02 2.0 6.6e-07 2.0 2.5e-02 1.0 2.0e-06 -0.0

very robust with respect to the mesh step sizes and the regularization parameter \gamma .
Based on our eigenvalue analysis, we would expect to achieve faster convergence rates
(or require fewer iterations) when \gamma becomes very small, which is confirmed by the
results in the last few columns. Nevertheless, we do observe a slightly deteriorated
convergence rate of our PinT preconditioner for a relatively large \gamma \geq 10 - 4 with a
very fine mesh, which is anticipated since our shown eigenvalue distribution is indeed
not uniformly bounded. In addition, the preconditioning step is unavoidably affected
by the introduced roundoff errors during the diagonalization process. For comparison,
the convergence results using the matching Schur complement (MSC) preconditioner
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(based on the same diagonally rescaled system) are given in Table 2, where we notice
slower convergence rates for very small \gamma . Nevertheless, the MSC preconditioner
indeed performs better with larger \gamma \geq 10 - 2, which can be roughly explained by
the underlying mechanism of matching two Schur complement terms. Overall, our
PinT preconditioner has faster and more robust convergence rates for the cases with
\gamma \leq 10 - 4, which are of our particular interest.

Table 4
Comparison of error results for Example 1 with the MSC preconditioner with different \gamma and

tol = 10 - 8 or tol = 10 - 10.

The MSC preconditioner (tol = 10 - 8) The MSC preconditioner (tol = 10 - 10)
\gamma (Nx, Nt) ey R ep R It ey R ep R It

1

( 128, 129) 3.5e-03 -- 8.3e-03 -- 6 3.5e-03 -- 8.3e-03 -- 8
( 256, 257) 8.7e-04 2.0 2.1e-03 2.0 7 8.7e-04 2.0 2.1e-03 2.0 8
( 512, 513) 2.2e-04 2.0 5.3e-04 2.0 6 2.2e-04 2.0 5.3e-04 2.0 8
(1024,1025) 5.4e-05 2.0 1.3e-04 2.0 6 5.5e-05 2.0 1.3e-04 2.0 7

10 - 2

( 128, 129) 3.1e-02 -- 2.0e-03 -- 11 3.1e-02 -- 2.0e-03 -- 13
( 256, 257) 7.7e-03 2.0 5.0e-04 2.0 11 7.7e-03 2.0 5.0e-04 2.0 13
( 512, 513) 1.9e-03 2.0 1.3e-04 2.0 11 1.9e-03 2.0 1.3e-04 2.0 13
(1024,1025) 4.9e-04 2.0 3.1e-05 2.0 11 4.9e-04 2.0 3.1e-05 2.0 12

10 - 4

( 128, 129) 5.5e-02 -- 4.0e-04 -- 17 5.5e-02 -- 4.0e-04 -- 22
( 256, 257) 1.4e-02 2.0 1.0e-04 2.0 21 1.4e-02 2.0 1.0e-04 2.0 27
( 512, 513) 3.5e-03 2.0 2.5e-05 2.0 23 3.5e-03 2.0 2.5e-05 2.0 29
(1024,1025) 8.7e-04 2.0 6.3e-06 2.0 24 8.7e-04 2.0 6.3e-06 2.0 31

10 - 6

( 128, 129) 3.0e-01 -- 1.3e-04 -- 14 3.0e-01 -- 1.3e-04 -- 20
( 256, 257) 7.8e-02 1.9 3.3e-05 1.9 21 7.8e-02 1.9 3.3e-05 1.9 31
( 512, 513) 2.0e-02 2.0 8.4e-06 2.0 34 2.0e-02 2.0 8.4e-06 2.0 49
(1024,1025) 4.9e-03 2.0 2.1e-06 2.0 49 4.9e-03 2.0 2.1e-06 2.0 65

10 - 8

( 128, 129) 8.8e-01 -- 2.5e-05 -- 4 8.9e-01 -- 2.5e-05 -- 8
( 256, 257) 2.8e-01 1.7 8.6e-06 1.5 7 2.8e-01 1.7 8.9e-06 1.5 12
( 512, 513) 7.4e-02 1.9 2.5e-06 1.8 14 7.5e-02 1.9 2.6e-06 1.8 23
(1024,1025) 1.8e-02 2.0 6.9e-07 1.8 26 1.9e-02 2.0 6.6e-07 2.0 39

Besides the number of iterations, there are also some significant differences in ap-
proximation errors between the two preconditioners. The combined error results are
given in Table 3, where we notice the chosen tolerance (tol = 10 - 7) is sufficient for
our PinT preconditioner to attain the desired second-order accuracy for most cases.
However, the MSC preconditioner fails to achieve the expected second-order accuracy
in the approximations for many cases. This indicates a better numerical robustness
of our PinT preconditioner, especially when \gamma is very small. Such a remarkable dis-
crepancy in approximation errors is not surprising, since a very small \gamma leads to a
more ill-conditioned system that is very sensitive to any numerical errors from early
termination of iterative solvers. We believe the degraded approximation accuracy of
the MSC preconditioner with a smaller \gamma is likely due to its own very large condi-
tion number [48]. For further improving the accuracy of MSC preconditioner, it is
necessary to use a much smaller tolerance (e.g., tol = 10 - 10), and hence it requires
significantly more iterations. For a complete illustration, the results of the MSC pre-
conditioner with smaller tol = 10 - 8 and tol = 10 - 10 are presented in Table 4, where
the approximation accuracy using tol = 10 - 10 indeed matches with the results of our
PinT preconditioner in Table 3. Hence, for a highly ill-conditioned system, a smaller
stopping tolerance should be used to obtain accurate approximations.
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Example 2 [35]. Now, we consider a 2D problem with \Omega = (0, 1)2, T = 2, and

y0(x1, x2) = sin(\pi x1) sin(\pi x2), y1(x1, x2) = sin(\pi x1) sin(\pi x2),

f(x1, x2, t) = (1 + 2\pi 2)et sin(\pi x1) sin(\pi x2) - 
1

\gamma 
(t - T )2 sin(\pi x1) sin(\pi x2),

g(x1, x2, t) = (et + 2 + 2\pi 2(t - T )2) sin(\pi x1) sin(\pi x2).

The exact solution of the optimal control problem is

y(x1, x2, t) = et sin(\pi x1) sin(\pi x2) and p(x1, x2, t) = (t - T )2 sin(\pi x1) sin(\pi x2).

Similar to Example 1, as shown in Tables 5 and 6, the convergence rates of our
proposed PinT preconditioner are faster and more robust than that of the MSC pre-
conditioner. With tol = 10 - 7, the MSC preconditioner fails to provide second-order
approximation accuracy for a very small \gamma . To recover the anticipated second-order
accuracy, based on our numerical experiments, it is necessary to use a smaller tolerance
tol = 10 - 10. The corresponding convergence results are reported in Table 7, where
more iterations are used. In this case, our PinT preconditioner clearly outperforms
the MSC preconditioner.

Table 5
Numbers of GMRES iterations and CPU times for Example 2 with our proposed PinT precon-

ditioner.

tol = 10 - 7 \gamma = 10 - 2 \gamma = 10 - 4 \gamma = 10 - 6 \gamma = 10 - 8 \gamma = 10 - 10

(Nx, Nx, Nt) It CPU It CPU It CPU It CPU It CPU
(64,64,65) 5 0.7 5 1.1 5 0.8 5 0.8 4 0.6

(128,128,129) 11 13.9 5 7.2 5 6.7 5 6.4 5 6.7
(256,256,257) 17 226.6 5 59.6 5 60.3 5 61.0 5 60.7

Table 6
Numbers of GMRES iterations and CPU times for Example 2 with the MSC preconditioner

(tol = 10 - 7).

tol = 10 - 7 \gamma = 10 - 2 \gamma = 10 - 4 \gamma = 10 - 6 \gamma = 10 - 8 \gamma = 10 - 10

(Nx, Nx, Nt) It CPU It CPU It CPU It CPU It CPU
(64,64,65) 12 1.6 15 2.0 10 1.4 4 0.6 1 0.2

(128,128,129) 12 13.1 19 21.7 17 18.8 6 6.9 2 2.8
(256,256,257) 12 119.4 23 230.6 23 236.5 9 90.3 2 25.2

Table 7
Numbers of GMRES iterations and CPU times for Example 2 with the MSC preconditioner

(tol = 10 - 10).

tol = 10 - 10 \gamma = 10 - 2 \gamma = 10 - 4 \gamma = 10 - 6 \gamma = 10 - 8 \gamma = 10 - 10

(Nx, Nx, Nt) It CPU It CPU It CPU It CPU It CPU
(64,64,65) 14 2.1 21 3.4 16 2.3 7 1.0 3 0.5

(128,128,129) 14 17.7 27 37.3 24 28.4 11 12.1 4 4.9
(256,256,257) 14 154.8 35 400.0 36 396.1 16 162.1 7 71.5

Example 3 [37]. In this example, we consider the control-constrained case with
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the following data:

\Omega = (0, 1), T = 2, ua = 5, ub = 10, y0(x) = sin(\pi x), y1(x) = 0,

f =  - max\{ ua, \gamma 
 - 1 min\{ ub, sin(\pi x)(t - T )2\} \} ,

g = 2 sin(\pi x) + \pi 2 sin(\pi x)(t - T )2 + sin(\pi x) cos(\pi t).

The exact solution is y(x, t) = sin(\pi x) cos(\pi t) and p(x, t) = sin(\pi x)(t  - T )2. The
initial guess of the quasi-Newton iteration (4.8a) is chosen as zeros, and the stopping
condition is based on the reduction of relative residual \| rk\| 2/\| r0\| 2 \leq tol, where
rk denotes the residual vector at the kth iteration; see (4.8a). In each iteration of
(4.8a), we compute \scrJ  - 1rk by the preconditioned GMRES solver. Numerically, we
find that it is unnecessary to solve the linear system very accurately in order to achieve
the desired fast convergence. Hence, we used a relatively larger stopping tolerance\surd 
tol in the inner preconditioned GMRES solver for better computational efficiency.

The computation of the LCP systems for the Nt steps can be highly parallelizable, for
which we use a damped and perturbed Newton-type algorithm in [14], with a stopping
tolerance of 10 - 8.

Fig. 5. Computed yh, ph, and uh with box constraints 5 \leq u \leq 10 and \gamma = 10 - 2 in Example 3
(Nx = 512, Nt = 513).

Figure 5 depicts the computed optimal state, adjoint state, and optimal control
(with its colormap) under the control constraint 5 \leq u \leq 10, where the optimal
control was reconstructed from the computed adjoint state. In Table 8, we report the
error and the convergence results of solving Example 3 by the proposed quasi-Newton
iterations (4.8a) with our PinT preconditioner. The desired second-order accuracy
is observed in all cases. The columns ItN, ItL, and ItG provide the number of outer
quasi-Newton iterations, averaged inner optimization iterations for solving LCP, and
averaged inner preconditioned GMRES iterations for solving the Jacobian system
defined by (4.8b), respectively. We notice that both the outer quasi-Newton solver
and the inner LCP solver show clear mesh-independent convergence rates that are
also very robust with respect to the regularization parameter. However, we indeed
observe mildly deteriorated convergence rates in the inner preconditioned GMRES
solver with our current PinT preconditioner.
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Table 8
Results for Example 3 solved by the proposed quasi-Newton iteration with our PinT precondi-

tioner (tol = 10 - 7).

\gamma (Nx, Nt) ey R ep R ItN ItL ItG CPU

10 - 2

(128,129) 1.8e-03 -- 2.6e-04 -- 7 5 41 4.5
(256,257) 4.5e-04 2.0 6.5e-05 2.0 7 5 54 20.5
(512,513) 1.1e-04 2.0 1.6e-05 2.0 7 5 80 137.5

10 - 4

(128,129) 1.8e-03 -- 2.5e-04 -- 6 5 41 4.0
(256,257) 4.5e-04 2.0 6.4e-05 2.0 6 5 56 18.5
(512,513) 1.1e-04 2.0 1.6e-05 2.0 6 5 84 128.1

10 - 6

(128,129) 1.8e-03 -- 2.5e-04 -- 7 5 47 5.2
(256,257) 4.5e-04 2.0 6.5e-05 2.0 7 5 67 25.5
(512,513) 1.1e-04 2.0 1.8e-05 1.9 7 5 98 188.8

10 - 8

(128,129) 1.8e-03 -- 2.5e-04 -- 6 5 37 3.7
(256,257) 4.5e-04 2.0 6.3e-05 2.0 6 6 57 19.0
(512,513) 1.1e-04 2.0 1.6e-05 2.0 7 6 96 172.3

10 - 10

(128,129) 1.8e-03 -- 2.5e-04 -- 6 6 39 3.8
(256,257) 4.5e-04 2.0 6.4e-05 2.0 6 6 57 19.2
(512,513) 1.1e-04 2.0 1.6e-05 2.0 6 6 82 122.5

This numerical observation in Table 8 is unexpected, since the Jacobian matrix \scrJ 
just corresponds to the same system in Example 1 with \gamma = 1. We conjecture that such
a less satisfactory convergence behavior of the inner GMRES solver is mainly caused
by the nonsmoothness of the solution \phi h of the LCP system.2 Such a nonsmooth
\phi k
h leads to a nonsmooth right-hand side rk (defined by (4.8a)). But the product

\scrJ  - 1rk should be smooth in the asymptotic sense (as k gets larger), because upon
convergence the solutions yh and ph are indeed smooth. This may partially explain
why it takes more iterations to find a good approximation of the solution \scrJ  - 1rk

in the Krylov subspace span\{ rk,\scrJ rk,\scrJ 2rk, . . . \} . We highlight that a similar worse
convergence behavior of the GMRES solver is also reported in [19] when applying
the block-circulant preconditioner to a one-shot scheme for the wave equation with
nonsmooth initial data.

To ameliorate the convergence rate of the inner GMRES solver, we need to design
a more effective preconditioner for the approximate Jacobian matrix \scrJ . Inspired by
the idea in [4, 38, 39], we consider a slight generalization of the preconditioner \scrP in
(2.4) with \gamma = 1, that is,

(5.1) \scrP (\alpha ) =

\biggl[ 
C1(\alpha )  - \tau 2It
\tau 2It C\sansT 

1 (\alpha )

\biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
C2(\alpha )

C\sansT 
2 (\alpha )

\biggr] 
\otimes \Delta h,

where \alpha \in (0, 1] is a free parameter and C1,2(\alpha ) are the \alpha -circulant matrices defined
by

C1(\alpha ) =

\left[       
1 \alpha  - 2\alpha 
 - 2 1 \alpha 
1  - 2 1

. . .
. . .

. . .

1  - 2 1

\right]       , C2(\alpha ) =

\left[       
1 \alpha 0
0 1 \alpha 
1 0 1

. . .
. . .

. . .

1 0 1

\right]       .(5.2)

2The nonsmoothness of the solution of an LCP system is well known; see, e.g., [9, pp. 668--670,
Chapter 7].
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Fig. 6. The eigenvalue distribution of \scrP  - 1\scrJ (i.e., \scrP  - 1(\alpha )\scrJ with \alpha = 1) (left panel), \scrP  - 1(\alpha )\scrJ 
with \alpha = 0.1 (middle panel), and \scrP  - 1

\dagger (\alpha )\scrJ with \alpha = 0.1 (right panel) in Example 3 (with Nx = 64

and Nt = 65).

The preconditioner used for Table 8 corresponds \alpha = 1 in (5.1). In Figure 6,
we plot the distribution of the eigenvalues of \scrP  - 1(\alpha )\scrJ with two values of \alpha : \alpha = 1
and \alpha = 0.1. We observe that a slightly small parameter \alpha leads to more clustered
eigenvalues. Unfortunately, an explicit formula, as given for the case \alpha = 1, for the
diagonalization of \scrP (\alpha ) with \alpha \in (0, 1) in section 2.1, is not available at the moment.
Alternatively, we can choose the block diagonals of \scrP (\alpha ) and get the block-diagonal
preconditioner

(5.3) \scrP \dagger (\alpha ) =

\biggl[ 
C1(\alpha )

C\sansT 
1 (\alpha )

\biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
C2(\alpha )

C\sansT 
2 (\alpha )

\biggr] 
\otimes \Delta h,

for which an explicit diagonalization is indeed available, since the \alpha -circulant matrices
C1,2(\alpha ) can be diagonalized simultaneously [5, Theorem 2.10] as

(5.4) C1,2(\alpha ) = V (\alpha )D1,2(\alpha )V
 - 1(\alpha ),

where
V (\alpha ) = \Lambda (\alpha )\BbbF \ast and D1,2(\alpha ) =

\sqrt{} 
Nt\BbbF \Lambda  - 1(\alpha )C1,2(\alpha )(:, 1)

with \Lambda (\alpha ) = diag(1, \alpha  - 1
Nt , \alpha  - 2

Nt , . . . , \alpha  - Nt - 1
Nt ) and C1,2(\alpha )(:, 1) being the first column

of the matrix C1,2(\alpha ). With (5.4) and letting U(\alpha ) = [
V (\alpha )

V \ast (\alpha )
] \otimes Ix, we can

diagonalize \scrP \dagger (\alpha ) in a PinT manner as

(5.5) \scrP \dagger (\alpha ) = U(\alpha )

\biggl( \biggl[ 
D1(\alpha )

D\ast 
1(\alpha )

\biggr] 
\otimes Ix  - \tau 2

2

\biggl[ 
D2(\alpha )

D\ast 
2(\alpha )

\biggr] 
\otimes \Delta h

\biggr) 
U(\alpha ) - 1.

In Figure 6, we also show the eigenvalue distribution of \scrP  - 1
\dagger (\alpha )\scrJ with \alpha = 0.1,

and this illustrates that the clustering of the eigenvalues is only slightly worse than
\scrP  - 1(\alpha )\scrJ and is much better than that of \scrP  - 1\scrJ . It is worthwhile to mention that
the Jacobian matrix \scrJ does not depend on the regularization parameter \gamma , which
allows \scrP \dagger (\alpha ) to be a good preconditioner of \scrJ . In particular, the matrix \scrP \dagger (\alpha ) will

not be a good preconditioner of \scrM (or \widehat \scrM ) whenever \gamma \ll 1. Hence, our choice of the
Jacobian matrix \scrJ is very crucial.

In comparison with Table 8, we report in Table 9 the approximation error and
convergence results of solving Example 3 by using \scrP \dagger (\alpha ) with \alpha = 0.1 as the precon-
ditioner. We notice that the fast and robust convergence rates of the quasi-Newton
iterations and the LCP solver are not affected, but the convergence rate of the inner
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Table 9
Results for Example 3 by the quasi-Newton iteration with the block \alpha -circulant preconditioner

\scrP \dagger (\alpha = 0.1) (tol = 10 - 7).

\gamma (Nx, Nt) ey R ep R ItN ItL ItG CPU

10 - 2

(128,129) 1.8e-03 -- 2.6e-04 -- 7 5 4 0.8
(256,257) 4.5e-04 2.0 6.5e-05 2.0 7 5 5 2.9
(512,513) 1.1e-04 2.0 1.6e-05 2.0 6 5 5 9.1

(1024,1025) 2.8e-05 2.0 4.1e-06 2.0 6 5 5 36.4

10 - 4

(128,129) 1.8e-03 -- 2.5e-04 -- 6 5 4 0.7
(256,257) 4.5e-04 2.0 6.4e-05 2.0 6 5 4 2.4
(512,513) 1.1e-04 2.0 1.6e-05 2.0 5 5 4 7.7

(1024,1025) 2.8e-05 2.0 4.0e-06 2.0 6 5 5 34.7

10 - 6

(128,129) 1.8e-03 -- 2.5e-04 -- 6 5 4 0.7
(256,257) 4.4e-04 2.0 6.4e-05 2.0 6 5 4 2.5
(512,513) 1.1e-04 2.0 1.6e-05 2.0 5 5 4 7.8

(1024,1025) 2.5e-05 2.2 2.9e-06 2.4 5 6 4 30.0

10 - 8

(128,129) 1.8e-03 -- 2.5e-04 -- 6 6 4 0.8
(256,257) 4.5e-04 2.0 6.4e-05 2.0 5 6 4 2.2
(512,513) 1.1e-04 2.0 1.6e-05 2.0 5 6 4 7.9

(1024,1025) 2.5e-05 2.2 3.0e-06 2.4 5 6 4 30.5

10 - 10

(128,129) 1.8e-03 -- 2.5e-04 -- 6 6 4 0.8
(256,257) 4.5e-04 2.0 6.4e-05 2.0 5 6 4 2.1
(512,513) 1.1e-04 2.0 1.6e-05 2.0 5 6 4 8.0

(1024,1025) 2.5e-05 2.2 3.0e-06 2.4 5 6 4 30.4

GMRES solver is dramatically improved to be clearly mesh-independent. More in-
depth eigenvalue analysis of such a block (diagonal) \alpha -circulant preconditioner will
be carried out in our future work. It is worthwhile to point out that the simplified
\scrP \dagger (\alpha ) is much easier to diagonalize than both \scrP (\alpha ) and \scrP .

Table 10
Results for Example 4 by the quasi-Newton iteration with the block \alpha -circulant preconditioner

\scrP \dagger (\alpha = 0.1) (tol = 10 - 7).

\gamma (Nx, Nt) ey R ep R ItN ItL ItG CPU

10 - 2

(64,64,65) 5.80e-04 -- 4.97e-04 -- 6 5 4 19.7
(128,128,129) 1.49e-04 2.0 1.27e-04 2.0 6 5 4 97.6
(256,256,257) 3.76e-05 2.0 3.19e-05 2.0 6 5 5 827.3

10 - 4

(64,64,65) 5.80e-04 -- 4.97e-04 -- 6 5 4 13.3
(128,128,129) 1.49e-04 2.0 1.27e-04 2.0 6 5 4 100.0
(256,256,257) 3.76e-05 2.0 3.19e-05 2.0 6 5 5 850.3

10 - 6

(64,64,65) 5.80e-04 -- 4.97e-04 -- 6 5 4 14.4
(128,128,129) 1.49e-04 2.0 1.27e-04 2.0 6 6 4 104.6
(256,256,257) 3.76e-05 2.0 3.19e-05 2.0 6 6 5 902.0

10 - 8

(64,64,65) 5.80e-04 -- 4.97e-04 -- 6 6 4 25.9
(128,128,129) 1.49e-04 2.0 1.27e-04 2.0 6 6 4 110.2
(256,256,257) 3.76e-05 2.0 3.19e-05 2.0 6 6 5 926.7

10 - 10

(64,64,65) 5.80e-04 -- 4.97e-04 -- 6 6 4 15.1
(128,128,129) 1.49e-04 2.0 1.27e-04 2.0 6 6 4 108.6
(256,256,257) 3.76e-05 2.0 3.19e-05 2.0 6 6 5 929.6

Example 4. In the last example, we consider a control-constrained 2D problem
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with the data

\Omega = (0, 1)2, T = 2, ua =  - 10, ub =  - 5, y0(x1, x2) = 0, y1(x1, x2) = \nu (x1, x2),

f(x1, x2, t) =  - 1

(t+ 1)2
\nu (x1, x2) - ln(t+ 1)\Delta \nu (x1, x2)

 - max

\biggl\{ 
ua,min

\biggl\{ 
ub,

1

\gamma 
(t - T )2\nu (x1, x2)

\biggr\} \biggr\} 
,

g(x1, x2, t) = 2\nu (x1, x2) - (t - T )2\Delta \nu (x1, x2) + ln(t+ 1)\nu (x1, x2),

where \nu (x1, x2) = (ex1 - 1)(ex1 - e)(ex2 - 1)(ex2 - e). The exact solution of this optimal
control problem is y(x1, x2, t) = ln(t+1) \nu (x1, x2) and p(x1, x2, t) = (t - T )2 \nu (x1, x2).
With the same solver setting as in Example 3, we report in Table 10 the approximation
errors and convergence results of solving Example 4 by the proposed quasi-Newton
iterations (4.8a) with the block diagonal \alpha -circulant preconditioner \scrP \dagger (\alpha ). Similar
to the 1D case, we again observe clearly mesh-independent convergence rates of the
outer quasi-Newton iterations, the LCP solver, and the inner GMRES solver, which
numerically demonstrate the effectiveness of our proposed algorithm in higher spatial
dimensions. In particular, the number of iterations is almost the same as in Table 9.
The expected second-order approximation accuracy is also obviously achieved.

6. Conclusions. In this paper, we proposed a new parallel-in-time (PinT) block-
circulant preconditioner for iteratively solving the discretized optimality system, which
stems from the distributed optimal control of wave equations. Based on a novel uni-
tary diagonalization of the preconditioner, its detailed parallel implementation steps
are described. The eigenvalues of the preconditioned system are discussed in de-
tail, which are shown to get closer to one as the regularization parameter becomes
smaller. This indicates a faster convergence rate for smaller regularization param-
eters (of particular interest in practice), which was verified by numerical examples.
In comparison with the recently developed matching Schur complement (MSC) pre-
conditioner, our proposed PinT preconditioner shows more robust convergence rates
with respect to both mesh step sizes and the regularization parameter. More impor-
tantly, the designed diagonalization provides a great potential to efficiently parallelize
the computation of the preconditioning step in time, which is very desirable for large-
scale practical applications. Our paper largely generalizes some known diagonalization
techniques originally developed for solving time-dependent PDEs to the correspond-
ing PDE-constrained optimal control problems. We are getting closer to solving the
open problem posed in [37] to design a preconditioner that achieves a convergence
rate independent of both spatial and temporal mesh step-sizes and the regularization
parameter. Parallel numerical results for validating the practical parallel efficiency
of our proposed PinT preconditioner are currently undertaken and will be reported
elsewhere.

Application of the PinT preconditioner to the optimal control problem with a
control constraint brings us several interesting topics for further research. First, it
deserves a complete convergence analysis to get a general principle for choosing the
variable change (4.5) and the Jacobian matrix \scrJ to achieve a rapid and robust con-
vergence in the quasi-Newton iteration (4.8a). Second, it is worth explaining why
the block-circulant preconditioner shows degraded convergence rates in the GMRES
solver in the presence of nonsmooth data. It is also worth exploring the diagonaliza-
tion of the generalized preconditioner \scrP (\alpha ) (cf. (5.1)) when \alpha \in (0, 1), since we find
numerically that a smaller \alpha indeed leads to more clustered eigenvalues. We believe
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that more sophisticated problem formulations, such as different regularization norms
or boundary control problems, could also be tackled using our PinT preconditioner
upon appropriate modification.
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