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TOWARD PARALLEL COARSE GRID CORRECTION FOR THE
PARAREAL ALGORITHM∗

SHU-LIN WU†

Abstract. In this paper, we present an idea toward parallel coarse grid correction (CGC) for
the parareal algorithm. It is well known that such a CGC procedure is often the bottleneck of
speedup of the parareal algorithm. For an ODE system with initial-value condition u(0) = u0 the
idea can be explained as follows. First, we apply the G-propagator to the same ODE system but
with a special condition u(0) = αu(T ), where α ∈ R is a crux parameter. Second, in each iteration
of the parareal algorithm the CGC procedure will be carried out by the so-called diagonalization
technique established recently. The parameter α controls both the roundoff error arising from such
a diagonalization technique and the convergence rate of the resulting parareal algorithm. We show
that there exists some threshold α∗ such that the parareal algorithm with diagonalization-based
CGC possesses the same convergence rate as that of the parareal algorithm with classical CGC if
|α| ≤ α∗. With |α| = α∗, we show that the condition number associated with the diagonalization
technique is a moderate quantity of order O(1) (and therefore the roundoff error is small) and is
independent of the length of the time interval. Numerical results are given to support our findings.
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1. Introduction. The parareal algorithm, proposed by Lions, Maday, and
Turinici in [18], received considerable attention in recent years, because of its po-
tential for parallel-in-time computation. It provides new flexibility to add more par-
allelism when the spatial parallelization saturates and has been applied to many dif-
ferent problems, such as time-dependent optimization and control [4, 23], Hamiltonian
systems [5, 10], turbulent plasma [24], time-periodic problems [9], (partial) integral-
differential equations [17, 31], etc. Qualitative convergence analysis of this algorithm
can be found in [2, 8, 9, 15, 19, 25, 27, 28, 29, 30]. The parareal algorithm also
provides insights for understanding and/or designing new parallel-in-time algorithms,
e.g., [3, 6, 7, 11, 14, 21].

The algorithm is defined by two time propagators, namely, F and G, which are,
respectively, associated with small step size ∆t and large step size ∆T . These two
step sizes satisfy ∆T

∆t = J with J ≥ 2 being an integer. The F-propagator proceeds
on the fine time grids with initial values specified on the coarse time grids, which are
inaccurate. The inaccuracy of these initial values are improved via the so-called coarse
grid correction (CGC) carried out by the G-propagator. Such a CGC procedure is
sequential and is often the bottleneck of speedup of the parareal algorithm.

We explore in this paper a possibility to improve the speedup of the parareal
algorithm, by implementing CGC in a parallel-in-time manner via the diagonaliza-
tion technique proposed recently [12, 13, 20]. To fix the idea, we present a detailed

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section July 28,
2017; accepted for publication (in revised form) February 9, 2018; published electronically May 17,
2018.

http://www.siam.org/journals/sisc/40-3/M114110.html
Funding: This work was supported by the NSF of China (11771313).
†Corresponding Author. School of Science, Sichuan University of Science and Engineering, Zigong,

Sichuan 643000, China (wushulin84@hotmail.com, wushulin ylp@163.com).

A1446

Administrator
打字机

Administrator
打字机

Administrator
文本框
December 29, 2017;

http://www.siam.org/journals/sisc/40-3/M114110.html
mailto:wushulin84@hotmail.com
mailto:wushulin\protect _ylp@163.com


PARAREAL WITH PARALLEL CGC A1447

convergence analysis of the new parareal algorithm for the linear ODE system:

(1.1) u′(t) +Au(t) = f, with u(0) = u0,

where A ∈ Rm×m. A convergence study of the new parareal algorithm for nonlinear
problems is also given; see section 4. Direct application of the diagonalization tech-
nique lies in applying the G-propagator to (1.1) and using a series of geometrically
increasing large step sizes

(1.2) ∆Tn = ∆Tβn−1, n = 1, 2, . . . , Nt,

where ∆T is some “reference” step size and β > 1 is a free parameter. The CGC
procedure by the G-propagator on these coarse time grids {Tn}Nt

n=1 can be represented
by a linear algebraic system with a blockwise lower triangular coefficient matrix.
Thanks to the different step sizes specified in (1.2), the blocks along the diagonal line
are different and therefore the large size coefficient matrix can be diagonalized. This
naturally permits parallel-in-time implementation of the CGC procedure.

Problems exist for such a direct use of the diagonalization technique in that
it is hard to make a good choice of β such that the roundoff error arising from the
diagonalization procedure is small and simultaneously the resulting parareal algorithm
converges rapidly. On one hand, to make the roundoff error small β should be larger
than 1 as much as possible (see section 2.2.2), while on the other hand β should be
close to 1 if a rapid convergence of the parareal algorithm is desired. Even though
the authors in [12, section 4] proposed an excellent idea to choose the parameter β
such that the roundoff error is asymptotically comparable to the discretization error,
the resulting parareal algorithm only converges rapidly on very short time intervals.
When T is a little bit larger, direct application of the diagonalization technique results
in divergence of the parareal algorithm, no matter how we choose β in (1.2). We will
illustrate such a divergence in section 5.1 by numerical results.

Our idea toward successful application of the diagonalization technique to the
parareal algorithm lies in applying G to the following slightly “wrong” model:

(1.3) u′(t) +Au(t) = f, with u(0) = αu(T ),

where α ∈ R is a free parameter. The G-propagator uses a uniform step size ∆T
and the condition u(0) = αu(T ) with α 6= 0 enables diagonalization of the block-
wise matrix associated with the CGC procedure. For the ODE system in (1.1), we
show that there exists some threshold α∗ such that the resulting parareal algorithm
possesses the same convergence rate as that of the parareal algorithm with classical
CGC, provided |α| ≤ α∗. Moreover, with α = α∗ we show that the condition number
associated with the diagonalization technique is only a moderate quantity of order
O(1) and is independent of T . Such a condition number implies that the roundoff
error is negligible in practical computation.

The rest of this paper is organized as follows. In section 2, we present the de-
tails of the parareal algorithm and the diagonalization technique. Section 3 presents
the convergence analysis and the speedup analysis of the parareal algorithm with
diagonalization-based CGC in the linear case. Nonlinear case is addressed in sec-
tion 4. Section 5 provides numerical results to validate the convergence properties of
the proposed parareal algorithm. We conclude this paper in section 6.

2. Parareal and diagonalization. In this section, we first revisit the details of
the parareal algorithm and then we introduce the diagonalization technique [12, 20]
for solving the linear ODEs (1.3). The diagonalization technique for nonlinear ODEs
following the work in [13] will be introduced in section 4.1.
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2.1. The parareal algorithm. For the system of ODEs

(2.1)

{
u′(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u0, t = 0,

where the function f : R× Rm → Rm is Lipschitz continuous, the parareal algorithm
can be described as follows. First, the whole time interval [0, T ] is divided into Nt
large time intervals [Tn, Tn+1], n = 0, 1, . . . , Nt − 1. We suppose that all the time
intervals are of uniform size, i.e., Tn+1−Tn = ∆T = T

Nt
. Second, we divide each large

time interval [Tn, Tn+1] into J(≥ 2) small time intervals [Tn+ j∆T
J
, T
n+

(j+1)∆T
J

], j =

0, 1, . . . , J − 1. Then, two numerical propagators G and F are assigned to the coarse
and fine time grids, where G is usually a low order and inexpensive numerical method
and F is usually a higher order expensive method. We designate by the symbol 	 the
time-sequential parts of the algorithm, and by the symbol ⊕ the time parallel parts.
Then, the parareal algorithm studied in this paper is as follows.

Algorithm 2.1 Parareal Algorithm with Classical CGC.

	 Initialization: Compute sequentially u0
n+1 = G(Tn, u

0
n,∆T ) with u0

0 = u0, n =
0, 1, . . . , Nt − 1;
For k = 0, 1, . . .
⊕ Step 1: For n = 0, 1, . . . , Nt − 1, compute{

ũn+ j+1
J

= F(Tn+ j
J
, ũn+ j

J
,∆t), j = 0, 1, . . . , J − 1,

with initial value ũn = ukn.

	 Step 2: Perform sequential CGC for n = 0, 1, . . . , Nt − 1:

(2.2) uk+1
n+1 = G

(
Tn, u

k+1
n ,∆T

)
+ ũn+1 − G

(
Tn, u

k
n,∆T

)
,

where uk+1
0 = u0.

	 Step 3: If
{
uk+1
n

}Nt

n=1
satisfies some stopping criterion, terminate the iteration; oth-

erwise go to Step 1.

Let FJ(Tn, u
k
n,∆t) denote a value calculated by applying successively J steps of

the fine propagator F to (2.1) with initial value ukn and the fine step size ∆t. Then,
it is clear that the parareal algorithm can be written compactly as

(2.3) uk+1
n+1 = G

(
Tn, u

k+1
n ,∆T

)
+ FJ

(
Tn, u

k
n,∆t

)
− G

(
Tn, u

k
n,∆T

)
.

2.2. The diagonalization technique. We next introduce the diagonalization
technique for the linear problem (1.3). The nonlinear case will be addressed in sec-
tion 4.1 following the work in [13]. We first consider the case α 6= 0 in (1.3). Our
ultimate goal is to apply such a technique to the parareal algorithm as we will describe
in section 2.3 and therefore the reader may ask why we do not simply consider α = 0 in
(1.3), since this corresponds to the natural and classical pattern of using the parareal
algorithm, i.e., both the F- and G-propagator are applied to the same problem. Based
on this consideration, we address α = 0 as a special case in section 2.2.2. We will see
that the diagonalization technique for α 6= 0 and α = 0 has essential differences.
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2.2.1. The case α 6= 0 in (1.3). Let ∆T be a large step size and Nt = T
∆T ≥ 2

be an integer. Then, we discretize (1.3) by the backward-Euler method:

(2.4a)

{
u0 = αuNt ,
un−un−1

∆T +Aun = fn, n = 1, . . . , Nt,

where un ≈ u(Tn). By considering all the Nt time points we can rewrite (2.4a) as

(B ⊗ Ix + It ⊗A)u = b, B =
1

∆T


1 −α
−1 1

. . .
. . .

−1 1

 ,(2.4b)

where u = (u1, u2, . . . , uNt
)> collects all theNt solutions of (2.4a), b = (f1, f2, . . . , fNt

)>,
and Ix ∈ Rm×m, It ∈ RNt×Nt are identity matrices.

Lemma 2.1. For α 6= 0, the matrix B given by (2.4b) can be diagonalized as
B = SDS−1, where the matrices S and D are given by

S = ΛV, with V = [v1, v2, . . . , vNt
] and

Λ = diag
(

1, α−
1

Nt , . . . , α−
Nt−1
Nt

)
, D = diag(λ1, λ2, . . . , λNt

),

vn =
[
1, ei2π(∆Tn), . . . , ei2π((Nt−1)∆Tn)

]>
, λn =

1− α 1
Nt e−i2π∆Tn

∆T
.

(2.5)

Proof. Let ṽn = [1, α−
1

Nt ei2π(∆Tn), . . . , α−
Nt−1
Nt ei2π((Nt−1)∆Tn)]>. Then, we have

Bṽn =



1− α 1
Nt e−i2π∆Tn(

1− α 1
Nt e−i2π∆Tn

)
α−

1
Nt ei2π(∆Tn)(

1− α 1
Nt e−i2π∆Tn

)
α−

2
Nt ei2π(2∆Tn)

...(
1− α 1

Nt e−i2π∆Tn
)
α−

Nt−1
Nt ei2π((Nt−1)∆Tn)


= λnṽn,

which holds for all n = 1, 2, . . . , Nt. This gives BS = SD, i.e., B = SDS−1.

It is clear that the computation of u in (2.4b) can be partitioned into three steps:

(a) (S ⊗ Ix)g = b,

(b) (λnIx +A)wn = gn, n = 1, 2, . . . , Nt,

(c) (S−1 ⊗ Ix)u = w,

(2.6)

where g = (g1, g2, . . . , gNt)
> and w = (w1, w2, . . . , wNt)

>. Now, step (b) is naturally
and highly parallelizable for all Nt time points. In (2.6), steps (a) and (c) are dual
and the computation of these two steps can be carried out by FFT by noticing that
S = ΛV and V is a Fourier matrix. Let u and û be, respectively, the exact solution
and computed solution of (2.6). Then, the roundoff error arising from the first and
third steps in (2.6) may cause dramatic inaccuracy between u and û. If we apply the
diagonalization technique to the parareal algorithm as we will describe in section 2.3,
such an inaccuracy seriously deteriorates the convergence rate. As pointed out in [12],
the roundoff error is dominated by the condition number of the eigenvector matrix S.
A smaller condition number corresponds to a smaller roundoff error.
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Lemma 2.2. For the matrix S given by (2.5), it holds that

(2.7) Cond2(S) ≤ max
{
|α|, |α|−1

}
.

Proof. For the matrices V and Λ given by (2.5), we have

(2.8)
‖V ‖2 =

√
Nt, ‖V −1‖2 =

1√
Nt
,

‖Λ‖2 = max
{

1, |α|−
Nt−1
Nt

}
, ‖Λ−1‖ = max

{
1, |α|

Nt−1
Nt

}
,

which gives Cond2(S) ≤ ‖V ‖2‖V −1‖2‖Λ‖2‖Λ−1‖2 ≤ max{|α|, |α|−1}.
From (2.7) we see that Cond2(S) is independent of Nt and therefore does not

increase when T becomes larger.

2.2.2. The case α = 0 in (1.3). The diagonalization technique presented
above is different from the one studied in [12, 20]. There, the authors applied this
technique to the initial-value problem (1.1) (i.e., α = 0 in (1.3)). In this case, if we
use a uniform step size ∆T the corresponding matrix B given by (2.4b) cannot be
diagonalized.

To make the diagonalization technique applicable, the authors use a series of
different step sizes {∆Tn}Nt

n=1 fixed by (1.2) and then replace (2.4a) by the following:

un+1 − un
∆Tn+1

+Aun+1 = fn+1, n = 0, 1, . . . , Nt − 1.(2.9a)

We can rewrite (2.9a) as follows:

(B ⊗ Ix + It ⊗A)u = b, B =


1

∆T1

− 1
∆T2

1
∆T2

. . .
. . .

− 1
∆TNt

1
∆TNt

 .(2.9b)

The matrix B can be diagonalized as B = SDS−1 with D = diag( 1
∆T1

, . . . , 1
∆TNt

) and

S =


1

p1
. . .

...
. . .

. . .

pNt−1 . . . p1 1

 , S−1 =


1

q1
. . .

...
. . .

. . .

qNt−1 . . . q1 1

 ,(2.9c)

where pn := 1∏n
j=1(1−βj) and qn := (−1)nβ

n(n−1)
2 pn. See [12] for more details.

The condition number of S increases rapidly as Nt increases; see [12, Theorem 5].
To get a better condition number, Gander and co-authors proposed to normalize the
eigenvector matrix S by a diagonal matrix D̃ given by

D̃ = diag

 1√
1 +

∑Nt−1
j=1 |pj |2

,
1√

1 +
∑Nt−2
j=1 |pj |2

, . . . , 1

 ,

which leads to a new eigenvector matrix S̃ := SD̃ satisfying B = S̃DS̃−1 as well. Let
β = 1 + τ with τ > 0. From [12, Theorem 5], we have

Cond∞(S̃) = O

(
Ntτ

−(Nt−1)

φ(Nt)

)
with φ(Nt) =

{
Nt

2 !(Nt

2 − 1)! if Nt is even,

(Nt−1
2 !)2 if Nt is odd.

(2.9d)

Hence, to make Cond∞(S̃) small we have to use a large parameter β to fix the step
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sizes {∆Tn}Nt
n=1 according to (1.2). However, a larger parameter β may result in un-

acceptable discretization error of (2.9a), which seriously deteriorates the convergence
rate of the parareal algorithm, if a diagonalization-based CGC is used.

The difficulty of choosing a good parameter β, to balance the roundoff error
and the discretization error, makes the diagonalization technique introduced here for
the case α = 0 not applicable to the parareal algorithm. In practice, the parareal
algorithm with such a diagonalization technique only converges for very short time
intervals, i.e., T is very small. When T becomes a little bit larger, the algorithm
diverges rapidly; see Figure 8 for illustration.

2.3. CGC via diagonalization. In this section, we introduce how to carry out
CGC via the aforementioned diagonalization technique. To this end, we apply the
F-propagator to (1.1) and apply the G-propagator to (1.3) with step sizes ∆t and ∆T ,
respectively. Here, we consider the case α 6= 0 only and for α = 0 the diagonalization
technique introduced in section 2.2.2 should be applied. Similar to Algorithm 2.1, we
formulate the parareal algorithm with diagonalization-based CGC as follows.

Algorithm 2.2 Parareal Algorithm with Diagonalization-Based CGC.

⊕ Initialization: Do the diagonalization procedure to u0
n+1 = G(Tn, u

0
n,∆T ) with

u0
0 = αu0

Nt
, n = 0, 1, . . . , Nt − 1;

For k = 0, 1, . . .
⊕ Step 1: For n = 0, 1, . . . , Nt − 1, compute

ũn+ j+1
J

= F(Tn+ j
J
, ũn+ j

J
,∆t), j = 0, 1, . . . , J − 1,

with initial value ũn =

{
ukn if n > 0,

u0 if n = 0.

(2.10)

	 Step 2: Perform CGC via the diagonalization technique described by (2.6):

(2.11) uk+1
n+1 = G

(
Tn, u

k+1
n ,∆T

)
+ ũn+1 − G

(
Tn, u

k
n,∆T

)
,

where n = 0, 1, . . . , Nt − 1 and uk+1
0 = αuk+1

Nt
.

	 Step 3: If {uk+1
n }Nt

n=1 satisfies some stopping criterion, terminate the iteration; oth-
erwise go to Step 1.

Note that in (2.10) the F-propagator uses u0 instead of uk0 at the initial time
point T0 = 0 and this ensures that the converged solution corresponds to the “correct”
numerical solution of (1.1); see Remark 2.1 given below. In each iteration, uk0 6= u0

because of the coupled condition uk0 = αukNt
.

In the (k + 1)th iteration of Algorithm 2.2, by letting

f =

 f(T1)
...

f(TNt
)

 , uk+1 =

u
k+1
1
...

uk+1
Nt

 ,

bk =


(Ix∆T−1 +A)

[
ũ1 − G(T0, αu

k
Nt
,∆T )

]
(Ix∆T−1 +A)

[
ũ2 − G(T1, u

k
1 ,∆T )

]
...

(Ix∆T−1 +A)
[
ũNt
− G(TNt−1, u

k
Nt−1,∆T )

]
+ f ,

(2.12a)
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it is easy to see that the CGC procedure (2.11) can be reformulated as

(B ⊗ Ix + It ⊗A)uk+1 = bk,(2.12b)

where the matrix B is given by (2.4b). Here and hereafter, we assume that the
G-propagator is chosen as the backward-Euler method.

Since (2.11) is equivalent to (2.12b), it is obvious that the coarse grid correction
of the parareal algorithm can be implemented parallel-in-time as well. The potential
of the diagonalization technique with respect to reduction of the computation cost
will be preserved by the parareal algorithm.

Remark 2.1. The parareal algorithm with diagonalization-based CGC consists
of applying the F-propagator to the original model (1.1), while applying the G-
propagator to a “wrong” model (1.3). However, this would not affect the correct-
ness and accuracy of the converged solution. This is clear by noticing that, upon
convergence, the converged solution {u∞n }Nt

n=1 satisfies

u∞n+1 = FJ(Tn, u
∞
n ,∆t), n = 0, 1, . . . , Nt − 1,

where u∞0 = u0. This implies that the converged solution will have achieved the
accuracy of the fine propagator F at the coarse grids with small step size ∆t. Con-
structing a special model to serve the computation of the G-propagator is a popular
idea in recent years; see, e.g., [1, 19, 22, 24].

3. Convergence analysis for linear systems. In this section, we analyze the
convergence properties and the speedup of the parareal algorithm with diagonalization-
based CGC for linear problem (1.1). The point of departure is the following result,
which is deduced from the analysis given by Gander and Vandewalle [8].

Theorem 3.1 (general result deduced from [8]). Let F and G be two one-step
numerical methods with stability functions Rf (z) and Rg(z), which are, respectively,
applied to the ODE systems (1.1) and (1.3) with small step size ∆t and large step size
∆T . Then, the error ek := (ek1 , e

k
2 , . . . , e

k
Nt

)> satisfies∥∥ek+1
∥∥ ≤ ‖G−1 (G− F) ‖

∥∥ek∥∥ ,(3.1)

where ‖ • ‖ is an arbitrary norm and the matrices G and F are given by

G =


Ix −αRg(∆TA)

−Rg(∆TA) Ix
0 −Rg(∆TA) Ix
...

. . .
. . .

. . .

0 . . . 0 −Rg(∆TA) Ix

 ,

F =


Ix

−RJf (∆tA) Ix
0 −RJf (∆tA) Ix
...

. . .
. . .

. . .

0 . . . 0 −RJf (∆tA) Ix

 .

Let A = VADAV
−1
A with DA = diag(µ1, µ2, . . . , µm) and VA consisting of the

eigenvectors of A. Define the norm 9 • 9∞ via the ∞-norm:

(3.2) 9 u9∞ := ‖(It ⊗ VA)u‖∞ ∀u ∈ RmNt .
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Then, for any matrix M ∈ RmNt×mNt the induced matrix norm is

9M9∞ =
∥∥(It ⊗ VA)M

(
It ⊗ VA−1

)∥∥
∞ .

Let ‖ • ‖ = 9 • 9∞ in (3.1). Then, we have

(3.3a) 9 G−1 (G− F) 9∞ ≤ max
z∈σ(∆TA)

∥∥∥G−1(z)
(
G(z)− F

( z
J

))∥∥∥
∞
,

where σ(∆TA) denotes the spectrum of the matrix ∆TA and G(z), F (z) ∈ RNt×Nt

are given by

G(z) =


1 −αRg(z)

−Rg(z) 1
0 −Rg(z) 1
...

. . .
. . .

. . .

0 . . . 0 −Rg(z) 1

 ,

F (z) =


1

−RJf (z) 1

0 −RJf (z) 1
...

. . .
. . .

. . .

0 . . . 0 −RJf (z) 1

 .

(3.3b)

Theorem 3.2. Let G be the backward-Euler method with step size ∆T and let
the coefficient matrix A in (1.1) be stable (i.e., all the eigenvalues have positive real
parts). Then for the parareal algorithm with diagonalization-based CGC it holds that

9ek+19∞ ≤ max
z∈σ(∆TA)

K(z, J, α) 9 ek9∞,(3.4a)

where the norm 9 • 9∞ is defined by (3.2). The quantity K, which we call the con-
vergence factor corresponding to a single eigenvalue (or in short “contraction factor”
hereafter), is given by

K(z, J, α) = max {|αRg(z)| (1 +Kcla(z, J)) , Kcla(z, J)} ,

with Kcla(z, J) :=

∣∣∣RJf ( zJ )−Rg(z)∣∣∣
1− |Rg(z)|

.
(3.4b)

The notation in (3.4a)–(3.4b) are the same as those appearing in Theorem 3.1.

Note. The function Kcla(z, J) is the contraction factor of the parareal algorithm
with classical CGC; see, e.g., [8, 27, 28].

Proof. Let T(q−Nt+1, q−Nt+2, . . . q0, q1, . . . , qNt−1) be the Toeplitz matrix deter-
mined by the 2Nt − 1 diagonal elements {qn}Nt−1

n=−Nt+1 as follows:

T(q−Nt+1, q−Nt+2, . . . q0, q1, . . . , qNt−1) :=


q0 q1 · · · qNt−2 qNt−1

q−1 q0 q1 · · · qNt−2

...
. . .

. . .
. . .

...
q−Nt+2 · · · q−1 q0 q1

q−Nt+1 q−Nt+2 · · · q−1 q0

.
(3.5)
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Then, a tedious but routine calculation yields

G−1(z) =
1

1− αRNt
g (z)

T
(
RNt−1
g (z), . . . ,Rg(z), 1, αRNt−1

g (z), . . . , αRg(z)
)
.

Hence, it holds that

G−1(z)
(
G(z)− F

( z
J

))
=

1

1− αRNt
g (z)

[
(RJf ( zJ )−Rg(z))Q − q

]
,

Q =



αRNt−1
g · · · · · · αRg
1 αRNt−1

g · · · αR2
g

Rg 1
. . .

...
...

. . .
. . . αRNt−1

g

RNt−2
g · · · Rg 1


Nt×(Nt−1)

, q =


αRg
αR2

g

αR3
g

...
αRNt

g

 .

This gives∥∥∥G−1(z)
(
G(z)− F

( z
J

))∥∥∥
∞

=
1

|1− αRNt
g (z)|

max
n=1,2,...,Nt

R(n) with

R(n) = |α||Rg(z)|n

+
1− |Rg(z)|n−1 |α| |Rg(z)|n

(
1− |Rg(z)|Nt−n

)
(1− |Rg(z)|)

∣∣∣(RJf ( zJ )−Rg(z))−1
∣∣∣ .

Since |Rg(z)| < 1 (because z ∈ σ(∆TA) and A is a stable matrix), it holds that

R(n) ≤ R̂(n) := |α||Rg(z)|n +
1− |Rg(z)|n−1

+ |α| |Rg(z)|n

(1− |Rg(z)|)
∣∣∣(RJf ( zJ )−Rg(z))−1

∣∣∣ .
It is easy to see maxn=1,2,...,Nt

R̂(n) = max
{
R̂(1), R̂(Nt)

}
, which implies that

(3.6) R(n) ≤ max
{
R̂(1), R̂(Nt)

}
.

We have

R̂(1) = |αRg(z)|

1 +

∣∣∣RJf ( zJ )−Rg(z)
∣∣∣

(1− |Rg(z)|)

 ,

lim
Nt→∞

R̂(Nt)7 =

∣∣∣RJf ( zJ )−Rg(z)
∣∣∣

(1− |Rg(z)|)

(
by using lim

Nt→∞
|Rg(z)|Nt → 0

)
.

Substituting this into (3.6) proves (3.4a)–(3.4b).

We are interested in deriving an upper bound of K(z, J, α) as follows:

ρ(α) := max
z∈σ(∆TA),J≥2

K(z, J, α).(3.7)

We can regard ρ(α) as the J-independent convergence factor of the parareal al-
gorithm with diagonalization-based CGC. Such a quantity is interesting, because it
depends on the parameter α only and therefore permits us to precisely capture the
effect of α on the convergence rate of the diagonalization-based parareal algorithm.
Moreover, since z ∈ σ(∆TA) and J = ∆T

∆t , such an upper bound implies that the
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convergence rate of the parareal algorithm is robust with respect to the change of the
space and time discretization parameters ∆x and ∆t, because it is independent of z
and J .

To study ρ(α), we define

α∗ =
maxz∈σ(∆TA),J≥2Kcla(z, J)

maxz∈σ(∆TA),J≥2 |Rg(z)|(1 +Kcla(z, J))
, ρcla = max

z∈σ(∆TA),J≥2
Kcla(z, J).

(3.8)

The quantity ρcla denotes the convergence factor of the parareal algorithm with clas-
sical CGC. With α∗ and ρcla, it is easy to deduce from Theorem 3.2 that

ρ(α) = ρcla if |α| ≤ α∗.(3.9)

This implies that if |α| does not exceed the threshold α∗ the parareal algorithm with
diagonalization-based CGC possesses the same convergence rate as that of the parareal
algorithm with classical CGC. This together with Lemma 2.2 implies that best choice
of the parameter α is αopt = α∗, since in this case the relative error of the diagonal-
ization procedure is minimal. In what follows, we will focus our discussion on such a
threshold α∗. To be more specific, we consider two representative cases, Rf (z) = e−z

and the Rf (z) = 1
1+z . Other cases of Rf (z) will be addressed in section 3.3.

The former case corresponds to the situation that we use for the F-propagator
the Runge-Kutta (RK) methods with sufficiently large ratio J ,1 because for an RK
method it holds that limJ→∞RJf ( zJ ) = e−z. It is worth mentioning that many authors

consider Rf (z) = e−z to justify the convergence properties of the parareal algorithm;
see, e.g., [8, 9, 18, 25]. The latter case Rf (z) = 1

1+z corresponds to a real situation
in practical computation, since in practice the ratio J is only a moderate integer
(e.g., J ∈ [101, 103]). Particularly, it corresponds to the simplest implicit parareal
algorithm, i.e., we use for both F and G the backward-Euler method.

We first consider z ∈ (0,∞), which is the case that the matrix A in the model
problem (1.1) has only positive eigenvalues, e.g., the case that A is a SPD matrix
arising from discretizing the negative Laplacian −∆. The case z ∈ C+, i.e., the
matrix A has complex eigenvalues with positive real parts, will be studied numerically
in section 3.2.

3.1. The case z ∈ (0,∞). For Rf (z) = e−z, we have RJf ( zJ ) = e−z and thus

K(z, J, α) = max

{
|α|

1 + z

(
1 +

1
1+z − e−z
1− 1

1+z

)
,

1
1+z − e−z
1− 1

1+z

}

= max

{
|α|1− e

−z

z
,

1− (1 + z)e−z

z

}
.

This implies that

ρ(α) = max
z≥0,J≥2

K(z, J, α) = max

{
|α|max

z≥0

1− e−z
z

,max
z≥0

1− (1 + z)e−z

z

}
.(3.10)

It is easy to verify

(3.11) max
z≥0

1− e−z
z

= 1, max
z≥0

1− (1 + z)e−z

z
= 0.3.

Hence, substituting this into (3.10) gives ρ(α) = max{|α|, 0.3}.
1It also corresponds to the situation that we use for F the exponential integrator: F = e−A∆t.
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Similarly, for Rf (z) = 1
1+z we have

K(z, J, α) = max


|α|

1 + z

1 +

1
1+z −

(
1

1+ z
J

)J
1− 1

1+z

 ,

1
1+z −

(
1

1+ z
J

)J
1− 1

1+z︸ ︷︷ ︸
=Kcla(z,J)


= max

|α|
1−

(
1

1+ z
J

)J
z

,Kcla(z, J)

 .

Hence, we also have

ρ(α) = max
z≥0,J≥2

K(z, J, α)

= max

|α| max
z≥0,J≥2

1−
(

1
1+ z

J

)J
z

, max
z≥0,J≥2

Kcla(z, J)


= max

{
|α|max

z≥0

1− e−z
z

, 0.3

}
= max{|α|, 0.3}.

(3.12)

Here, we have used the first result in (3.11) and the fact that maxz≥0,J≥2Kcla(z, J) =
0.3, which is proved in [23]. (See also the proof of [9, Corollary 4.1].)

Proposition 3.3. For the diagonalization-based parareal algorithm consisting of
applying G = backward-Euler to (1.3) and F = e−A∆t (or backward-Euler) to (1.1),
if σ(A) ⊆ (0,∞), it holds that

ρ(α) ≤ max{|α|, 0.3} and α∗ = 0.3,(3.13)

where ρ(α) is defined by (3.7) and α∗ is defined by (3.8).

In Figure 1 on the left, we plot the maximum of K(z, J, α) with respect to z, i.e.,
maxz≥0K(z, J, α), as a function of α. (Since K(z, J, α) is an even function of α, we
only consider α ≥ 0.) The solid line denotes the case RJf ( zJ ) = e−z and the other lines

denote the case RJf ( zJ ) = ( 1
1+ z

J
)J with three values of J . We see that these numerical

results confirm Proposition 3.3 very well. With α = 0.3, we show in Figure 1 on the
right the contraction factor K(z, J, α) as a function of z. Again, the results shown in
the right subfigure confirm Proposition 3.3 very well, because from this subfigure it
is clear that the maximum of K(z, J, α) is 0.3.

3.2. The case z ∈ C+. For z ∈ C+, similar to [30] we consider the representa-
tive case that z lies in a sector region D(θ) with opening angle θ ∈ (0, π2 ) on the right
half complex plane (see Figure 2 for illustration):

(3.14) D(θ) :=
{
z ∈ C+ : <(z) ≥ tan(θ)|=(z)|

}
.

In this case, by using the maximal principle of analytic functions and the sym-
metry of the contraction factor K(z, J, α) (as a function of z) with respect to the real
axis, we have maxz∈D(θ)K(z, J, α) = maxz=y+i tan(θ)y,y≥0K(z, J, α). From this, we
consider the parameter α∗ and the quantity ρ(α) defined by

α∗ =
maxy≥0,J≥2Kcla(y + i tan(θ)y, J)

maxy≥0,J≥2 |Rg(y + i tan(θ)y)|(1 +Kcla(y + i tan(θ)y, J))
,

ρ(α) = max
y≥0,J≥2

K(y + i tan(θ)y, J, α).
(3.15)
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Fig. 1. Numerical validation of Proposition 3.3. Left: the maximum maxz≥0K(z, J, α) as a
function of α. Right: with α = 0.3 the contraction factor K(z, J, α) as a function of z.
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Fig. 3. For the case σ(A) ⊆ D(θ), the quantities α∗ (left) and ρ(α∗) (right) defined by (3.15).

In Figure 3, we plot the quantities α∗ (left) and ρ(α∗) (right) as functions of θ. As
θ increases, we see that the threshold α∗ of |α|, such that the parareal algorithm with
diagonalization-based CGC has the same convergence rate as that of the algorithm
with classical CGC, becomes larger. The convergence factor ρ(α) with α = α∗ also
becomes larger as θ increases and this can be explained as follows. From (3.9) we
have ρ(α∗) = ρcla and it is already well known that ρcla increases as θ increases; see,
e.g., [30].
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Fig. 4. Left: the maximum of K(z, J, α) with respect to z as a function of α. Right: with
α = α∗ the contraction factor as a function of y (via the relation z = y + i tan(θ)y).

Similar to Figure 1, we now show in Figure 4 the results concerning the contraction
factor K(z, J, α). On the left column, with two values of θ we show maxy≥0K(y +
i tan(θ)y, J, α) as a function of α. On the right column, we show K(y+ i tan(θ)y, J, α)
with α = α∗ as a function of z. The message from this figure coincides with Figure 3:
by comparing the top row to the bottom row we see that as θ increases the quantities
α∗ and ρ(α∗) become larger. Moreover, by comparing Figure 4 to Figure 1 we see
that the contraction factor K in the cases of σ(A) ⊆ (0,∞) and σ(A) ⊆ D(θ) looks
similar.

3.3. Other choices of the F-propagator. We next extend the above discus-
sion about α∗ and the corresponding convergence factor ρ(α∗) to more general choices
of the F-propagator. As before, the G-propagator is still fixed to the backward-Euler
method. We consider several widely used RK methods, the second-order TR/BDF2
method (i.e., the ode23tb solver in MATLAB), the third-order SDIRK method, the
fourth-order Lobatto IIIC method, and the fifth-order Radau IIA method, which are
strongly A-stable. We do not consider RK methods which are only A-stable (e.g.,
the famous Trapezoidal rule), because the parareal algorithm using for F these RK
methods does not possesses a robust convergence rate and particulary for a given
ratio J = ∆T

∆t the contraction factor Kcla(z, J) approaches to 1 as z → ∞; see
[8, 25, 27, 28, 29] for more details. Since K(z, J, α) is larger than Kcla(z, J) the reader
can imagine that, if an A-stable RK method is used for F , the parareal algorithm
with diagonalization-based CGC does not possess a robust convergence rate as well.
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Fig. 5. For several Runge–Kutta methods chosen as the F-propagator, the quantities α∗ (left)
and ρ(α∗) (right) defined by (3.15) as functions of θ.

For the above four RK methods, we show in Figure 5 the quantities α∗ and ρ(α∗)
defined by (3.15) as functions of θ. We see that the difference between Figures 3 and 5
is negligible. Particularly, for these RK methods both α∗ and ρ(α∗) become larger as
θ increases and α∗ < 1. Note that a larger α∗ (not exceeds 1) has a positive effect on
the diagonalization-based CGC, because, from Lemma 2.2, a larger parameter α = α∗

results in a smaller condition number and therefore reduces the roundoff error arising
from the diagonalization procedure.

Remark 3.1. The data shown in Figure 5 on the left is useful for practical com-
putation. Precisely, we can first construct a function Φ(θ) by interpolating these data
and then for a given problem u′(t) + Au(t) = f(t) and given parareal configurations
(e.g., for specified F , ∆t, ∆T , Nt), we can estimate the angle θ for the spectrum
σ(A) and finally get a suitable α∗ = Φ(θ). By doing this, we can compute the critical
parameter α∗ before the actual run.

3.4. Speedup analysis. In this section, we analyze the speedup of the parareal
algorithm. Let the computation time for moving forward one step of G and F be Tg
and Tf , respectively. Then, the total computation time by using F sequentially is

(3.16) Tseq = J ×Nt × Tf .

Similar to [20], we assume in the following that the computation time for solving each
linear system in step (b) of (2.6) is comparable to the cost for moving forward one
step of G. (For simplicity we assume that the cost for the former is Tg as well.) Then,
the computation time for a single iteration of the parareal algorithm, disregarding the
communication cost, can be expressed as{

Tcla−CGC = J × Tf + Tg +Nt × Tg, classical CGC,

Tdiag−CGC = J × Tf + Tg + Tg + 2Tstep−(a), diagonalization-based CGC,

where for both CGC procedures the quantity J × Tf + Tg denotes the computation
time on each large subinterval. For the classical CGC procedure, Nt×Tg denotes the
computation time for moving forwarding Nt steps of G; for the diagonalization-based
CGC procedure, Tstep (a) denotes the computation time for implementing steps (a) of
(2.6). Since steps (a) and (c) are dual, it is reasonable to assume that the computation
time for these two steps is the same.
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Based on our discussions in sections 3.1–3.3, the parareal algorithms using the
classical CGC and the diagonalization-based CGC (with |α| ≤ α∗) have the same
convergence factor ρ, which is a constant quantity. Therefore, for given tolerance ε

the anticipated number of iterations is k = log(ε/9e09∞)
log ρ , where e0 = (e0

1, e
0
2, . . . , e

0
Nt

)>

denotes the initial error. Without loss of generality, we assume 9e09∞ = 1, since it
is just a scaling factor of the tolerance ε. Hence, the total computation time of the
parareal algorithm to achieve the anticipated tolerance is{

Tcla−CGC
para = log ε

log ρ (J × Tf + Tg +Nt × Tg) , classical CGC,

Tdiag−CGC
para = log ε

log ρ

(
J × Tf + 2Tg + 2Tstep−(a)

)
, diagonalization-based CGC.

Now, by letting

c =
Tf
Tg
, c̃ =

Tstep−(a)

Tg
, C =

log ρ

log ε
,(3.17)

the speedups of the parareal algorithms with the two CGC procedures are

Scla−CGC =
Tseq

Tcla−CGC
para

=
JNtTf

log ε
log ρ (JTf + Tg +NtTg)

= C
NtJc

(Nt + Jc+ 1)
,

Sdiag−CGC =
Tseq

Tdiag−CGC
para

=
JNtTf

log ε
log ρ

(
JTf + 2Tg + 2Tstep−(a)

) = C
NtJc

(Jc+ 2 + 2c̃)
.

For the speedup Sdiag−CGC, we need to discuss the quantity c̃ defined by (3.17).
We argue that c̃� 1 when m� Nt, i.e., the size of the coefficient matrix A in (1.1) is
much larger than the number of large subintervals. (The assumption m � Nt holds
naturally when A arising from semidiscretizing time-dependent PDEs in d-dimension
with d ≥ 2, i.e., m = O(∆x−d).) For step (a) of (2.6), since S = ΛV we have

g =
(
S−1 ⊗ Ix

)
b =

(
V −1 ⊗ Ix

) (
Λ−1 ⊗ Ix

)
b,

where Λ ∈ CNt×Nt is a diagonal matrix, V ∈ CNt×Nt is a Fourier matrix, and
Ix ∈ Rm×m is an identity matrix. Hence, the computation of g can be divided
into two steps, g̃ := (Λ−1 ⊗ Ix)b and g = (V −1 ⊗ Ix)g̃. With Nt CPUs the cost
for the computation of g̃ is O(m). For the computation of g, the inverse FFT can
be applied and the cost is well known: O(mNt log2Nt).

2 The FFT technique can
be also implemented in parallel and there was a lot of efforts in this direction; see,
e.g., [16]. According to these studies, the cost for computing the matrix-vector product
(V −1 ⊗ Ix)g̃ can be reduced to O(m log2Nt). In summary, the computation time for
step (a) in (2.6) is of O(m log2Nt) when the parallel FFT is used. This cost is signifi-
cantly smaller than that of solving the linear problem (Ix+∆TA)un = un−1 +∆Tfn,
i.e., moving forward one step of G, by many widely used linear solvers, e.g., the LU
decomposition, the Jacobi/Gauss–Seidel/SOR iterations, the multigrid methods, and
the domain decomposition methods, etc.

Now, by letting c̃ = 1 in Sdiag−CGC (which is a conservative estimate of c̃ based
on our above discussion) we compare Scla−CGC and Sdiag−CGC by plotting these two
quantities as functions of Nt in Figure 6. Here, we regard the product J×c as a single

2Here the appearance of m is because of the fact that the vector g̃ consists of Nt subvectors
{g̃n}Nt

n=1 with each g̃n ∈ Cm and thus during the (inverse) FFT every element of V −1 acts on
vectors (of length m) instead of scalar complex numbers.
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Fig. 6. Comparisons between the speedups of the parareal algorithms using two different CGC
procedures. Left: parareal with classical CGC. Right: parareal with diagonalization-based CGC. For
all these plottings, ρ = 0.3 and ε = 1e− 12.

variable. It is clear that the speedup Sdiag−CGC is better than Scla−CGC. In particular,
Sdiag−CGC increases linearly as Nt increases, while Scla−CGC first increases slowly and
then approaches to constant as Nt increases; the quantity Jc makes much difference
for Scla−CGC, while for Sdiag−CGC such a difference is negligible (i.e., Sdiag−CGC is
robust with respect to Jc). Moreover, for small and moderate Jc by comparing the
two subfigures we see that Sdiag−CGC � Scla−CGC.

To finish this section, we comment that in the case the F- and G-propagators are
identical and J = 1 (i.e., Jc = 1), the speedup Sdiag−CGC should be changed to

Sdiag−CGC =
Nt

1 + 2c̃
,

and from this it is clear that the speedup still scales very well as Nt (the number
of CPUs) increases. This is because in this case we just need to perform one itera-
tion of parareal and the computation actually reverts to solving the ODEs via direct
diagonalization-based parallel computation, which was already justified in [20].

4. Convergence analysis for nonlinear problems. In this section, we jus-
tify the convergence of the parareal algorithm with diagonalization-based CGC for
nonlinear problems:

(4.1) u′(t) = f(u(t), t), with u(0) = u0,

where f : Rm ×R+ → Rm. Similar to the linear case, the F-propagator is applied to
(4.1), while the G-propagator is applied to the following problem:

(4.2) u′(t) = f(u(t), t) with u(0) = αuT .

4.1. Diagonalization in nonlinear situation. We first introduce how to apply
the diagonalization technique based on the backward-Euler method to (4.2). This is
a generalization of the work by Gander and Halpern [13], where the case α = 0 is
concerned.

Applying the backward-Euler method with step size ∆T to (4.2) leads to

un+1 − un
∆T

= f(un+1, Tn+1) with u0 = αuNt ,
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where n = 0, 1, . . . , Nt − 1. This discrete system can be represented as follows:

(B ⊗ Ix)u = f(u) :=


f(u1, T1)
f(u2, T2)

...
f(uNt

, TNt
)

 with u =


u1

u2

...
uNt

 ,(4.3)

where B ∈ RNt×Nt is the matrix defined by (2.4a) and Ix ∈ Rm×m is the identity
matrix. We now apply the quasi-Newton’s method to solve the nonlinear system (4.3).
This leads with some initial guess u[0] to the following iteration:

(4.4) u[l+1] = u[l] − J−1(u[l])
(
(B ⊗ Ix)u[l] − f(u[l])

)
.

Here [l] denotes the iteration index of the quasi-Newton’s method and J(u[l]) is an
approximation to the Jacobian B ⊗ Ix − ∂uf(u[l]) and is given by

(4.5a) J(u[l]) := B ⊗ Ix − It ⊗ J̃(u[l]),

where u[l] = (u[l],1, . . . , u[l],Nt
)>, u[l],n = (u[l],n,1, . . . , u[l],n,m)> and

(4.5b) J̃(u[l]) :=
1

Nt

Nt∑
n=1

Js
(
u[l],n

)
∈ Rm×m

with Js(u[l],n) = diag(∂uf(u[l],n,1, Tn), . . . , ∂uf(u[l],n,m, Tn)). Such a choice of J(u[l])
is suggested in [13].

A routine calculation yields that (4.4) can be represented as

J(u[l])u[l+1] = f(u[l])− (It ⊗ J̃(u[l]))u[l].(4.6)

We diagonalize B as B = SDS−1 with S and D being given by Lemma 2.1. Then,

J(u[l]) = (S ⊗ Ix)
(
D ⊗ Ix − It ⊗ J̃(u[l])

)
(S−1 ⊗ Ix).

Hence, similar to (2.6) we can solve u[l+1] from (4.6) via

(a) (S ⊗ Ix)g = f(u[l])− (It ⊗ J̃(u[l]))u[l],

(b)
(
λn − J̃(u[l])

)
wn = gn, n = 1, 2, . . . , Nt,

(c) (S−1 ⊗ Ix)u[l+1] = w,

(4.7)

where g = (g1, g2, . . . , gNt)
> and w = (w1, w2, . . . , wNt)

>. Now, step (b) is paralleliz-
able for all the Nt time points.

We now show how to apply the diagonalization technique to the parareal algo-
rithm in the nonlinear situation. Let

bk =


bk1
bk2
...
bkNt

 with bkn =

{
ũ1 − G(T0, αu

k
Nt
,∆T ) if n = 1,

ũn − G(Tn−1, u
k
n−1,∆T ) if n ≥ 2,

f̃(un, Tn) =
bkn

∆T
+ f

(
un − bkn, Tn

)
.

(4.8)
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Then, we can represent the CGC procedure (2.11) as uk+1
n+1− bkn+1 = G(Tn, u

k+1
n ,∆T ).

Since G denotes the backward-Euler method, this relation implies{
(uk+1

n+1−bkn+1)−uk+1
n

∆T = f
((
uk+1
n+1 − bkn+1

)
, Tn+1

)
, n = 0, 1, . . . , Nt − 1,

uk+1
0 = αuk+1

Nt
,

⇒
{
uk+1
n+1−uk+1

n

∆T = f̃
(
uk+1
n+1, Tn+1

)
, n = 0, 1, . . . , Nt − 1,

uk+1
0 = αuk+1

Nt
.

(4.9)

Now, by replacing f by f̃ in (4.3)–(4.7), it is clear that the diagonalization technique
is applicable to solve {uk+1

n }Nt
n=1 via the quasi-Newton’s method.

4.2. Convergence analysis. To analyze convergence of the parareal algorithm
with diagonalization-based CGC, i.e., Algorithm 2.2, we make the following assump-
tion, which is also assumed in [9] in the scalar case.

Assumption 1. For the function f(u, t) appearing in (4.1), suppose there exists a
constant L > 0 such that the following one-sided Lipschitz condition holds:

〈f(u1, t)− f(u2, t), u1 − u2〉 ≤ −L‖u1 − u2‖2,(4.10)

where 〈·〉 denotes the Euclid inner product. Moreover, we assume that the F-
propagator is an exact solver.

The following lemma is useful in our analysis.

Lemma 4.1. Under Assumption 1, we get for the F-propagator∥∥FJ(Tn, u1,∆t)−FJ(Tn, u2,∆t)
∥∥

2
≤ e−L∆T ‖u1 − u2‖2 ∀u1,2 ∈ Rm.(4.11a)

For the G-propagator it holds that

‖G(Tn, u1,∆t)− G(Tn, u2,∆t)‖2 ≤
1

1 + ∆tL
‖u1 − u2‖2 ∀u1,2 ∈ Rm.(4.11b)

Proof. For the scalar case f : R × R+ → R, the proof is given in [9, section 5].
Without essential change, the proof can be extended to the system case f : Rm×R+ →
Rm here. We therefore omit the details.

Theorem 4.2. Under Assumption 1, the errors of Algorithm 2.2, i.e., the parareal
algorithm with diagonalization-based CGC, satisfy

max
n=1,2,...,Nt

∥∥u(Tn)− uk+1
n

∥∥
2
≤ ρ(α) max

n=1,2,...,Nt

∥∥u(Tn)− ukn
∥∥

2
∀k ≥ 0

with ρ(α) = max

{
|α|1 + e−L∆T

L∆T
,
e−L∆T + 1

1+L∆T

1− 1
1+L∆T

}
,

(4.12)

provided |α|
1+L∆T < 1 and Nt � 1.

Note. If α = 0, the quantity ρ reduces to ρcla :=
e−L∆T + 1

1+L∆T

1− 1
1+L∆T

, which is the

result given by Gander et al. for the so-called PP-PC algorithm applied to nonlinear
scalar time-periodic differential equations; see [9, Theorem 5.2] for more details.

Proof. Let εkn := ‖u(Tn)− ukn‖2. Then, for n ≥ 1 we have

εk+1
n+1 = FJ(Tn, u(Tn),∆t)−

(
G
(
Tn, u

k+1
n ,∆T

)
+ FJ(Tn, u

k
n,∆t)− G

(
Tn, u

k
n,∆T

))
=
(
FJ(Tn, u(Tn),∆t)−FJ

(
Tn, u

k
n,∆T

))
−
(
G(Tn, u(Tn),∆T )− G(Tn, u

k
n,∆T )

)
+
(
G(Tn, u(Tn),∆T )− G

(
Tn, u

k+1
n ,∆T

))
.
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Similarly, for n = 0 we have

εk+1
1 =

(
FJ(T0, u0,∆t)−FJ(T0, u0,∆T )

)
−
(
G(T0, αu(TNt

),∆T )− G
(
T0, αu

k
Nt
,∆T

))
+
(
G(T0, αu(TNt

),∆T )− G
(
T0, αu

k+1
Nt

,∆T
))

=
(
G(T0, αu(TNt

),∆T )− G
(
T0, αu

k+1
Nt

,∆T
))

−
(
G(T0, αu(TNt

),∆T )− G
(
T0, αu

k
Nt
,∆T

))
.

Applying Lemma 4.1 to the above two equalities results in∥∥εk+1
n+1

∥∥
2
≤ e−L∆T ‖εkn‖2 +

1

1 + ∆TL

(
‖εkn‖2 + ‖εk+1

n ‖2
)
, n = 1, 2, . . . , Nt − 1,∥∥εk+1

1

∥∥
2
≤ |α|

1 + ∆TL

(
‖εkNt
‖2 + ‖εk+1

Nt
‖2
)
, n = 0.

Let a = e−L∆T + 1
1+L∆T , b = 1

1+L∆T and ζkn = ‖εkn‖2. Then, we have{
ζk+1
n+1 ≤ bζk+1

n + aζkn, n = 1, 2, . . . , Nt − 1,

ζk+1
1 ≤ |α|bζk+1

Nt
+ |α|bζkNt

,

which can be represented as

(4.13)


1 −|α|b
−b 1

. . .
. . .

−b 1


︸ ︷︷ ︸

:=G


ζk+1
1

ζk+1
2
...

ζk+1
Nt


︸ ︷︷ ︸

:=ζk+1

≤


0 |α|b
a 0

. . .
. . .

a 0


︸ ︷︷ ︸

:=F


ζk1
ζk2
...
ζkNt


︸ ︷︷ ︸

:=ζk

.

As we already mentioned in the proof of Theorem 3.2, the inverse matrix G−1 is

G−1 =
1

1− |α|bT
(
bNt−1, . . . , b, 1, |α|bNt−1, . . . , |α|b

)
,

where T denotes the Toeplitz matrix given by (3.5). Under the condition |α|b < 1 it
is clear that G−1 is positive matrix. Hence, from (4.13) we have

(4.14) ζk+1 ≤ G−1Fζk.

Now, similar to the analysis in the proof of Theorem 3.2 we know that the infinite
norm of G−1F can be bounded as follows:

(4.15) ‖G−1F‖∞ ≤ max

{
|α|b

(
1 +

a

1− b

)
,

a

1− b

}
if Nt →∞.

Substituting a = e−L∆T + 1
1+L∆T and b = 1

1+L∆T into (4.15) gives (4.12).

Similar to the linear case, from Theorem 4.2 we know that there exits a threshold
α∗ in the nonlinear case as well, such that the parareal algorithm with diagonalization-
based CGC possesses the same convergence rate as that of the algorithm with classical
CGC if |α| ≤ α∗. Such a threshold α∗ is given by

(4.16) α∗ =
L∆Te−L∆T + L∆T

1+L∆T(
1− 1

1+L∆T

)
(1 + e−L∆T )

.
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Fig. 7. The quantity α∗ defined by (4.16) as a function of L∆T .

Note that in (4.16) the Lipschitz constant L is required which may not be easy to
obtain/estimate for nonlinear ODEs and therefore it is not easy to compute α∗ by
(4.16). Fortunately, the use of α∗ can be avoided in practice and thus it is unnecessary
to know L explicitly. The reasons are explained as follows. The quantity α∗ is an
upper bound of α such that the parareal algorithm using diagonalization-based CGC
has the same convergence rate as that of the parareal algorithm using classical CGC,
i.e., ρdiag−CGC = ρcla−CGC, if |α| ≤ α∗. In Figure 7, we plot α∗ as a function of L∆T
and it is clear that α∗ ≥ 1; actually this can be proved for all L∆T > 0. Hence, it is
reasonable to choose α = 1, α = 1

2 , α = 1
3 , or other values in practice. The principle

for choosing α is that α should not be too small, e.g., α = 10−8, because in this case
the roundoff error arising from the diagonalization procedure will be larger than the
discretization error of the converged solution.

5. Numerical results. In this section, we do numerical experiments to validate
the convergence rate of the parareal algorithm with diagonalization-based CGC. For
a given F-propagator, the focus will be the comparison of the convergence rates
between the parareal algorithm with diagonalization-based CGC and the algorithm
with classical CGC. The G-propagator is always fixed to the backward-Euler method.

We consider the following two-sided fractional diffusion equation as the model:

(5.1)


∂tu = a1

(
0Dγ1

x1
u
)

+ b1 (x1Dγ1

1 u) + a2

(
0Dγ2

x2
u
)

+ b2 (x2
Dγ2

1 u) + ηu+ f, (x1, x2, t) ∈ Ω× (0, T ],

u(x1, x2, 0) = u0(x1, x2), (x1, x2) ∈ Ω,

u(x1, x2, t) = 0, (x1, x2) ∈ ∂Ω,

where Ω = (0, 1)2, γj ∈ (1, 2], and aj and bj are nonnegative constants satisfying
aj + bj 6= 0 for j = 1, 2. For any γ ∈ (1, 2] the symbols 0Dγxu and xDγ1u are,
respectively, the left and right Riemann–Liouville fractional operators defined by

0Dγxu(x, t) =
1

Γ(2− γ)

∂2

∂x2

∫ x

0

u(x̃, t)

(x− x̃)γ−1
dx̃,

xDγ1u(x, t) =
1

Γ(2− γ)

∂2

∂x2

∫ 1

x

u(x̃, t)

(x− x̃)γ−1
dx̃.

(5.2)
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The reason for choosing (5.1) as the test problem here is twofold. First, semidiscretiz-
ing (5.1) will result in ODE system (1.1) with dense coefficient matrix A. Numerical
computation of this kind of ODE system is often challenging. Second, we can choose
suitable problem parameters a1, b1, a2, b2, γ1, and γ2 to control the angle θ of the spec-
trum σ(A) of A and by doing this we can verify our theoretical analysis in sections 3
and 4 in different situations.

For space discretization, we use the second-order weighted and shifted Grünwald
difference (WSGD) formula established in [26]. For a well-defined function v(x) on
the bounded interval [0, 1], the WSGD formula leads to the following matrix approxi-
mation of the left and right Riemann–Liouville fractional derivatives on the uniformly
spaced grid points {xj = j∆x,∆x = 1/m, j = 1, 2, . . . ,m− 1}:

(0Dγx) (v(x1), . . . , v(xm−1))
>

= Wγv +O
(
∆x2

)
,

(xDγ1 ) (v(x1), . . . , v(xm−1))
>

= W>
γ v +O

(
∆x2

)
,

where v ≈ (v(x1), . . . , v(xm−1))> and

Wγ =



w
(γ)
1 w

(γ)
0

w
(γ)
2 w

(γ)
1 w

(γ)
0

... w
(γ)
2 w

(γ)
1

. . .

w
(γ)
m−2 · · · . . .

. . . w
(γ)
0

w
(γ)
m−1 w

(γ)
m−2 · · · w

(γ)
2 w

(γ)
1


with

{
w

(γ)
0 = γ

2 g
(γ)
0 ,

w
(γ)
l = γ

2 g
(γ)
l + 2−γ

2 g
(γ)
l−1 for l ≥ 1.

(5.3a)

The quantities {g(γ)
l }l≥0 are the coefficients of the power series of (1− z)γ :

(5.3b) g
(γ)
0 = 1, g

(γ)
l =

(
1− 1 + γ

l

)
g

(γ)
l−1, l = 1, 2, . . . .

Now, applying the WSGD formula to each of the four fractional derivatives in (5.1)
results in the ODE system (1.1) with dense coefficient matrix A given by

A = Q+ η(Ix ⊗ Ix) with

Q = − 1

(∆x)γ1

[
Ix ⊗

(
a1Wγ1

+ b1W
>
γ1

)]
− 1

(∆x)γ2

[(
a2Wγ2

+ b2W
>
γ2

)
⊗ Ix

]
,

(5.4)

where Ix ∈ R(m−1)×(m−1) is the identity matrix. Here, we use mesh size ∆x to treat
both the x1-direction and the x2-direction in (5.1).

In section 5.1 we consider the case that the function f in (5.1) is a u-independent
function and therefore (5.1) is a linear PDE. In section 5.2 we consider the case
f = f(u, t, x1, x2) such that (5.1) is a nonlinear PDE. The initial iterate for the
parareal algorithm is chosen randomly and the iteration process stops when

(5.5) max
n

∥∥ukn − un∥∥∞ ≤ 10−12, 3

where {un} denotes the converged solution. Moreover, in all experiments concerning
the diagonalization-based CGC we use a positive parameter α. For the case α < 0
the results look similar.

3This criterion is rather restrictive and will lead to an excessive amount of iterations for the
parareal algorithm.
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Table 1
The values of θ, α∗, and ρ(α∗) under two groups of problem/discretization parameters.

Problem/discretization parameters θ α∗ ρ(α∗)

a1 = 1, b1 = 0.2, a2 = 0.5, b2 = 1, γ1 = 1.75, γ2 = 1.5,∆x = 1
20

0.13 0.3 0.3

a1 = 1, b1 = 0.2, a2 = 0.2, b2 = 1, γ1 = 1.32, γ2 = 1.7,∆x = 1
20

0.80 0.42 0.41
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Fig. 8. Measured convergence rates of the parareal algorithm with F = backward-Euler in differ-
ent situations. A line with an α means that we implement the CGC procedure via the diagonalization
technique. Here T = 5, ∆T = 0.1, J = 40 and the other problem/discretization parameters are given
in Table 1.

5.1. Linear case: f = 10 sin(3tx1x2). We first consider the linear case with
the following two groups of problem and discretization parameters shown in Table 1.
The corresponding values of the angle of the sector D(θ), the threshold α∗, and the
convergence factor ρ(α∗) are also listed on the right of Table 1. (α∗ and ρ(α∗) are
measured for F = backward-Euler according to (3.15).) To let the angle θ be the
dominate factor controlling the convergence rate of the parareal algorithm, we fix η
in (5.1) for a given ∆x as η = −minλ∈σ(Q) <(λ), which makes minλ∈σ(A) <(λ) = 0.4

Let T = 5, ∆T = 0.1, and J = 40. Then, in Figure 8 we show the measured con-
vergence rate of the parareal algorithm with F = backward-Euler in three situations:

• With “α = 0” in Figure 8, we mean that we perform CGC via the diagonaliza-
tion technique introduced in section 2.2.2, i.e., by applying the G-propagator
to (1.3) with α = 0 using a series of large step sizes {∆Tn := ∆Tβn−1}Nt

n=1,
where ∆T = 0.1 and β > 1 is chosen according to the optimal principle given
by [12, Theorem 7].

• With “classical CGC,” we mean that we implement the CGC procedure in
the classical pattern, i.e., in the sequential mode.

• With an α > 0, we mean that we perform the diagonalization-based CGC,
by applying the G-propagator to (1.3) with a uniform large step size ∆T .

We see that in the case of α = 0, the parareal algorithm diverges rapidly. This is due
to the large roundoff error (around 109) arising from the diagonalization procedure as
already explained in sections 1 and 2.2.2. On the contrary, the new diagonalization-
based CGC with α > 0 gives a satisfactory result and particularly when α does not
exceed the threshold α∗ it results in the same convergence rate as that of using the

4Such a shift parameter η makes the spectrum σ(A) perfectly distributed in the sector D(θ) as
shown in Figure 2. If minλ∈σ(A) <(λ) > 0 is large, the convergence factor analyzed in section 3 can
not predict the convergence rate very well in practice.
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Fig. 9. For problem (5.1) in the linear case, the parareal iteration number needed to satisfy the
tolerance (5.5). Top row: J = 40, ∆x = 1

20
, and T varies. Middle row: T = 10, J = 40, and ∆x

varies. Bottom row: T = 10, ∆x = 1
20

, and J varies. The problem parameters are given in Table 1
and for all these six subfigures ∆T = 0.1.

classical CGC. When α > α∗, the convergence rate deteriorates and this coincides
with our analysis in section 3.2. (See Figure 4 on the left column and the related
comments.) Moreover, by comparing the two subfigures in Figure 8 we see that the
convergence factor ρ(α∗) given in this paper is sharp, since the values of ρ(α∗) given
in Table 1 predict the numerical plotting very well.

It would be interesting to validate whether the convergence rate of the parareal
algorithm with diagonalization-based CGC is robust with respect to the change of T
and the discretization parameters or not. In Figure 9 on the top row we show the
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iteration number of the parareal algorithm required to satisfy the error tolerance (5.5)
when the length of time interval increases. Similarly, on the middle (resp., bottom)
row, we show the iteration number needed to satisfy the tolerance (5.5) when ∆x
(resp., J) varies and the other quantities are fixed. We see that the convergence rates
of the parareal algorithm using both the classical CGC and the diagonalization-based
CGC possesses a robust convergence rate. Moreover, when the crux parameter α
satisfies α ≤ α∗ these two CGCs result in the same convergence rate for the parareal
algorithm.

If we choose for F some other time-integrator, e.g., the TR/BDF2 method, the
third SDIRK method, the fourth-order Lobatto IIIC method, and the fifth-order
Radau IIA method, the result looks very similar to Figures 9.

5.2. The nonlinear case: f = 1
5(1+eu)

. We next consider the nonlinear case

and validate the convergence rate of the parareal algorithm with the classical CGC and
the nonlinear diagonalization-based CGC described in section 4.1. We fix ∆T = 0.25
and choose for the problem parameters a1, a2, b1, b2, γ1, and γ2 the first group of
values listed in Table 1. Let f(u) := Au + f(u) with u = (u1, u2, . . . , um)> and A
being the matrix given by (5.4). Then, the Lipschitz constant L associated with the
nonlinear function f can be estimated as follows:

(5.6) L = min
λ∈σ(A)

<(λ) + min
u∈R
|f ′(u)| = min

λ∈σ(Q)
<(λ) + η+ min

u∈R
eu

5(1 + eu)2
≈ 12.8 + η, 5

where Q is the matrix given by (5.4). In the following, we consider two values for
η: η = 5 and η = 20. From Theorem 4.2 we know that the parareal algorithm with
classical CGC converges with a convergence factor

(5.7) ρcla :=
e−L∆T + 1

1+L∆T

1− 1
1+L∆T

≈
{

0.2390 if η = 5,

0.1216 if η = 20.

For the parareal algorithm with diagonalization-based CGC, according to (4.16) the
threshold α∗ such that the convergence factor is the same as ρcla is

(5.8) α∗ ≈
{

1.051 if η = 5,

1.002 if η = 20.

Now, similar to Figure 9 we show in Figure 10 the iteration number needed to
satisfy the tolerance (5.5) when one of the three quantities T , ∆x, and J varies and
the other two are fixed. We see that the convergence property of the parareal algo-
rithm with diagonalization-based CGC is very similar to that in the linear situation.
Particularly, by using the diagonalization-based CGC with a parameter α ≤ α∗, e.g.,
α = 0.01, the parareal algorithm possesses the same convergence rate as that of the
parareal algorithm using the classical CGC.

Here we consider the parareal algorithm using for F the backward-Euler method
and if we choose for F some other time-integrator, e.g., the TR/BDF2 method, the
third SDIRK method, the fourth-order Lobatto IIIC method, and the fifth-order
Radau IIA method, the result looks similar.

6. Conclusions. The diagonalization technique [12, 13, 20] provides a natural
strategy toward parallel CGC for the parareal algorithm. For differential equations

5Numerically we find that minλ∈σ(Q) <(λ) ≈ 12.8 holds for all the ∆x used in subsection.
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Fig. 10. For problem (5.1) in the nonlinear case, the parareal iteration number needed to satisfy
the tolerance (5.5). Top row: J = 50, ∆x = 1

50
, and T varies. Middle row: T = 16, J = 50, and

∆x varies. Bottom row: T = 16, ∆x = 1
50

, and J varies. The first group of values in Table 1 are
used as the problem parameters and for all these six subfigures ∆T = 0.25.

with initial-value condition, direct application of such a technique for the parareal
algorithm unfortunately yields divergence, because of uncontrollable increase of the
condition number associated with this technique. The idea proposed in this paper is to
apply the G-propagator to the same differential equation but with a coupled condition
u(0) = αu(T ) between the initial value and the finial value, where α is the coupling
parameter. We illustrated that there exists some threshold α∗ such that the parareal
algorithm with diagonalization-based CGC possesses the same convergence rate as
that of the parareal algorithm with classical CGC if |α| ≤ α∗. Numerical results for
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both linear and nonlinear problems confirmed this conclusion very well. With α = α∗,
the condition number associated with the diagonalization technique is a moderate
quantity of order O(1) and is independent of the length of the time interval. For
high order time-integrators chosen as the propagator F , e.g., the TR/BDF2 method,
the third SDIRK method, the fourth-order Lobatto IIIC method, and the fifth-order
Radau IIA method, all the mentioned conclusions hold, too.
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