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A GAUSS--SEIDEL TYPE METHOD FOR DYNAMIC NONLINEAR
COMPLEMENTARITY PROBLEMS\ast 

SHU-LIN WU\dagger , TAO ZHOU\ddagger , AND XIAOJUN CHEN\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The dynamic nonlinear complementarity problem (DNCP) consisting of a nonlin-
ear differential system and a complementarity system has been used to formulate and study many
dynamic problems. In a Gauss--Seidel type method for DNCPs, by first guessing a solution of the
differential system, we can solve the complementarity system and then with the computed solution
we can solve the differential system to update the guess. Upon convergence at the current time point
we can move to the next one. The idea can be easily generalized to a multipoint version: instead of
doing iterations at each single time point, we can do iterations for a number of time points, say J time
points, all at once. Despite its simplicity and easy implementation, convergence of this method is not
justified so far. In this paper, we present interesting convergence theorems for this method. We show
that the method with a fixed length of time interval converges superlinearly and the convergence rate
is robust with respect to the step-size h. Moreover, we show that the method with a fixed number
of time points converges with a rate \scrO (h). Since at each iteration the differential system and the
complementarity system are solved separately, many existing solvers are directly applicable for each
of these two systems. It is notable that we can solve the complementarity system at all the J time
points in parallel. Numerical results of the method to solve the 4-diode bridge wave rectifier with
random circuit parameters and the projected dynamic systems are given to support our findings.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . dynamic nonlinear complementarity problems, iterative methods, convergence
analysis, nonsmooth circuit systems, projected dynamic systems

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65M55, 65M12, 65M15, 65Y05

\bfD \bfO \bfI . 10.1137/19M1268884

1. Introduction. We are interested in solving the following dynamic nonlinear
complementarity problem (DNCP) with initial value x(0) = x0:

(1.1) \.x(t) = F (t, x(t), y(t)), 0 \leq y(t) \bot G(t, x(t), y(t)) \geq 0, t \in (0, T ),

where x(t) \in \BbbR m, y(t) \in \BbbR n
+, F : \BbbR + \times \BbbR m \times \BbbR n

+ \rightarrow \BbbR m, and G : \BbbR + \times \BbbR m \times 
\BbbR n

+ \rightarrow \BbbR n. The nonnegativity and perpendicularity in (1.1) are explained in the
component sense. Applications of differential complementarity problems and other
closely related models, such as the differential variational inequalities [12, 31], can be
found in many places; we refer the reader to the excellent monographs [13, 16] and the
survey papers [26, 29]. An important subclass is the following differential semiaffine
systems [2, 16, 26]:

(1.2) \.x(t) = F (t, x(t), y(t)), 0 \leq y(t) \bot Nx(t) +My(t) + g(t) \geq 0, t \in (0, T ),

\ast Received by the editors June 17, 2019; accepted for publication (in revised form) August 6, 2020;
published electronically November 17, 2020.

https://doi.org/10.1137/19M1268884
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author is supported by NSF of China (under grant 11771313)

and NSF of Sichuan Province (under grant 2018JY0469). The work of the second author is par-
tially supported by NSF of China (under grants 11822111 and 11688101), Science Challenge Project
(TZ2018001), and Youth Innovation Promotion Association (CAS). The work of the third author is
partially supported by Hong Kong Research Grant Council for grant PolyU153001/18P.

\dagger Corresponding author. School of Mathematics and Statistics, Northeast Normal University,
Changchun 130024, China (wushulin84@hotmail.com).

\ddagger LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS,
Chinese Academy of Sciences, Beijing, 100190, China (tzhou@lsec.cc.ac.cn).

\S Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong
Kong (xiaojun.chen@polyu.edu.hk).

3389

D
ow

nl
oa

de
d 

12
/2

2/
20

 to
 1

15
.1

56
.1

41
.5

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1268884
mailto:wushulin84@hotmail.com
mailto:tzhou@lsec.cc.ac.cn
mailto:xiaojun.chen@polyu.edu.hk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3390 SHU-LIN WU, TAO ZHOU, AND XIAOJUN CHEN

whereN \in \BbbR n\times m,M \in \BbbR n\times n, and g : \BbbR + \rightarrow \BbbR n. A special case of (1.2) is the dynamic
linear complementarity problem (DLCP) [4, 5, 6, 9, 16, 18, 20, 26, 28, 30, 32, 33]:

(1.3) \.x(t) = Ax(t)+By(t)+f(t), 0 \leq y(t) \bot Nx(t)+My(t)+g(t) \geq 0, t \in (0, T ),

where A \in \BbbR m\times m, B \in \BbbR m\times n, and f : \BbbR + \rightarrow \BbbR m.
For a DNCP, the exact solution is not available in general, and quantitative study

of these problems mainly relies on numerical computation. The time-stepping method
is widely used [1, 4, 9, 10, 11, 13, 16, 18, 20, 26, 33]. Applying the Backward-Euler
method to (1.1) gives

0 \leq yj \bot G(tj , xj , yj) \geq 0, xj = xj - 1 + hF (tj , xj , yj), j = 1, 2, . . . , Nt,(1.4)

where h = T
Nt

is the step-size and Nt is a positive integer.1 Clearly, the major
computation cost of solving (1.1) lies in solving the nonlinear system (1.4) at each
time point, and the goal of this paper is to establish an efficient method to solve such
a nonlinear system.

1.1. The existing methods. There are two mainstream methods for solving
(1.4) at each time point. The first one is a direct method, which is for DLCP (1.3).
The nonlinear system (1.4) for DLCP is

0 \leq yj \bot Nxj +Myj + gj \geq 0, xj = xj - 1 + hAxj + hByj + hfj , j = 1, 2, . . . , Nt.

(1.5)

From the discretized ODE system xj can be given as

xj = h(I  - hA) - 1Byj + \~fj with \~fj := (I  - hA) - 1(xj - 1 + hfj),(1.6a)

and then we substitute xj into the linear complementarity system (LCS) in (1.5):

0 \leq yj \bot \~gj +Mhyj \geq 0 with Mh := hN(I  - hA) - 1B +M, \~gj := gj +N \~fj .

(1.6b)

Solving (1.6b) gives yj and then by substituting yj into (1.6a) we get xj . Method
(1.6a)--(1.6b) is extensively studied in the literature; cf. [1, 4, 5, 10, 11, 18, 20, 25, 26].
Problems exist for this approach in two aspects. First, even though the LCS in (1.5)
has a unique solution in a certain sense, there is no guarantee that this is also true for
(1.6b). For example, if M is a P-matrix2 the LCS in (1.5) has a unique solution at
each time point tj , but this is often not the case for (1.6b) because the matrixMh may
not be a P-matrix, unless the step-size h is sufficiently small. Second, for large-scale
problems, e.g., the DLCPs arising from the parabolic Signorini problems [14, 32], it
would be difficult to compute the matrix Mh. For example, suppose B = [b1, . . . , bn];
then we have to solve n linear systems \{ (I  - hA) - 1bl\} nl=1. The massive computer
memory and computation time required would be serious problems if A and B are
large size matrices.

The second mainstream method for solving (1.4) is the semismooth Newton
method [7, 9]. Under some suitable assumptions, the complementarity system has

1We assume that the time points \{ tj\} Jj=0 are equally spaced, i.e., \{ tj = jh\} Nt
j=0, but this is not

a restrictive assumption since all the results obtained in this paper also hold for arbitrarily chosen
time points.

2A matrix M is called a P-matrix if all the principal minors of M are positive.
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a unique solution denoted by \scrY (xj). Then, by substituting this expression into the
differential system we get a nonlinear system concerning xj : \scrF (xj) = 0, where

\scrF (z) := z  - xj - 1  - hF (tj , z,\scrY (z)).

Applying the semismooth Newton method to this problem results in the following
iterations:

(1.7) V k
j \Delta xkj =  - \scrF (xkj ), xk+1

j = \Delta xkj + xkj , k = 0, 1, . . . ,

where x0j is the initial guess and V k
j is the Clarke generalized Jacobian matrix of

\scrF (z) at xkj . The semismooth Newton method is locally convergent, and therefore, the

initial guess x0j must be very close to xj [9]. Moreover, it would be difficult to get the

Clarke Jacobian matrix V k
j for DNCPs of large size.

1.2. New idea. The goal of this paper is to avoid the aforementioned problems
for the direct method (1.6a)--(1.6b) and the semismooth Newton method (1.7), by
solving (1.4) iteratively in a Gauss--Seidel fashion:

0 \leq yk+1
j \bot G(tj , x

k
j , y

k+1
j ) \geq 0, xk+1

j = xj - 1 + hF (tj , x
k+1
j , yk+1

j ),(1.8)

where k \geq 0 is the iteration index and x0j is an initial guess of xj . Upon convergence,
we have x\infty j = xj and y\infty j = yj . Since the differential and complementarity systems
are solved separately, for each of these two systems many existing methods can be
used without changes. Precisely, the nonlinear function F that models the differential
system is often a smooth function, and therefore, xk+1

j can be obtained by using
the classical Newton method [15]. For the complementarity system, we can solve
it by many mature solvers, e.g., the iterative method based on some linearization
technique [27] and the PATH solver [17].3

Of particular interest is the semiaffine problems (1.2), i.e.,

0 \leq yk+1
j \bot Nxkj +Myk+1

j + gj \geq 0, xk+1
j = xj - 1 + hF (tj , x

k+1
j , yk+1

j )(1.9)

for which we can solve the LCS via existing optimization solvers. For example, if
M is a Z-matrix,4 we can obtain yk+1

j via solving the following linear programming
problem [9]:

min \| y\| 1, s.t. y \geq 0, My +Nxkj + gj \geq 0.

Moreover, for DLCPs, i.e.,

0 \leq yk+1
j \bot Nxkj +Myk+1

j + gj \geq 0, xk+1
j = xj - 1 + hAxk+1

j + hByk+1
j + hfj ,

(1.10)

we need to solve only one linear system to get xk+1
j , i.e., (I  - hA)xk+1

j = xj - 1 +

hByk+1
j +hfj . Suppose after k

\ast iterations of (1.10) the error arrives at the prescribed
tolerance; then we solve k\ast linear systems in total. In practice, e.g., for the examples
studied in section 4, k\ast is much less than the number of linear systems needed to form
the matrix Mh for the direct method (1.6a)--(1.6b) and the Clarke generalized Jaco-
bian matrix V k

j for the semismooth Newton method (1.7). For large-scale problems,
this is an important advantage.

3The most recent PATH solver can be downloaded for free from http://pages.cs.wisc.
edu/\sim ferris/path.html.

4A matrix M is a Z-matrix if its off-diagonal elements are nonpositive.
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Instead of applying (1.8) to each single time point, we can generalize the idea to
a multipoint version as follows. First, we divide \{ t1, t2, . . . , tNt

\} into P groups:

\{ t1, t2, . . . , tJ\} , \{ tJ+1, tJ+2, . . . , t2J\} , . . . , \{ t(P - 1)J+1, t(P - 1)J+2, . . . , tPJ\} ,

where tPJ = tNt
= T and J = Nt

P \geq 1 is an integer. Then, we apply (1.8) to each
of these P groups of time points one-by-one. Without loss of generality, we assume
P = 1 (i.e., J = Nt) and then we get a multipoint version of (1.8) as

(1.11) 0 \leq yk+1
j \bot G

\bigl( 
tj , x

k
j , y

k+1
j

\bigr) 
\geq 0, xk+1

j = xk+1
j - 1 + hF

\bigl( 
tj , x

k+1
j , yk+1

j

\bigr) 
,

where j = 1, 2, . . . , J . The quantities \{ yk+1
j \} Jj=1 are independent of each other, and

therefore, the computation of the complementarity system at all the J time points is
in parallel. If the computation of the complementarity system is much more expensive
than that of the ODE system, e.g., for DNCP (1.1) with n \gg m, such a parallelism
can save considerable computation time.

The iterative algorithm (1.8) is the basis of this paper, but for completeness we
will make a convergence analysis for the multipoint version (1.11) and the convergence
properties of (1.8) can be directly deduced (cf. Remark 2.2). We will show the con-
vergence of the iterative method (1.11) when G is a uniform P-function with respect
to y (cf. (2.1) for definition). We prove that the method has two different convergence
properties depending on whether we use it for a fixed length of time interval or we
use it for a fixed number of time points. For the first situation, we prove superlinear
convergence with a rate independent of the step-size h. For the second situation,
we prove that the method converges with a rate \scrO (h) and thus a smaller step-size h
accelerates the convergence speed. For the case when G is a linear function of y,

(1.12) G(t, x(t), y(t)) =My(t) + \~G(t, x(t)),

we prove that these results hold if M is a Z-matrix or positive semidefinite matrix.
The rest of this paper is organized as follows. In section 2, we present the conver-

gence analysis of the new iterative method for the case whenG is a uniform P-function.
In section 3, we consider the case (1.12) for M being a Z-matrix or positive semidef-
inite matrix. In section 4, we show applications together with numerical results of
the new iterative method for differential complementarity systems arising in three
different fields. This includes a direct application of the method to a 4-diode bridge
wave rectifier consisting of a nonlinear resistor and a capacity with random value, and
a modified application of the method to a projected dynamic system arising from the
spatial price equilibrium problem. The numerical results show that the new iterative
method is superior to the existing methods, with respect to robustness, complexity,
and computation time. We conclude this paper in section 5.

Remark 1.1. An iterative method of Gauss--Seidel style for solving DLCPs has
been studied in [32]. The main idea is to express the exact solution xk+1(t) via
Laplace inversion transform:

xk+1(t) =
1

2\pi i

\int 
\Gamma 

e - st(sI  - A) - 1(x0 +B\widehat yk+1(s) + \widehat f(s))ds,(1.13)

where \widehat yk+1(s) and \widehat f(s) denote the Laplace forward transforms of yk+1(t) and f(t) and
\Gamma denotes a contour in the complex plane, which is a simple, closed, positively oriented
curve enclosing the spectrum of A. This method is only applicable to DLCP (1.3).
For the nonlinear case or the linear case with time-dependent coefficient matrix A(t),
we cannot represent xk+1(t) via Laplace inversion, and thus the method proposed
in [32] is entirely not applicable to DNCPs.

D
ow

nl
oa

de
d 

12
/2

2/
20

 to
 1

15
.1

56
.1

41
.5

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE METHODS OF GAUSS--SEIDEL STYLE FOR DNCPs 3393

2. Convergence analysis in the uniform P-function case. In this section,
we consider the case that the function G(t, x, y) is a uniform P-function of y in \BbbR n

+,
i.e., there exists a constant L0 > 0 such that (cf. [26, section 5])

(2.1) max
1\leq l\leq n

(\=yl  - \~yl)(Gl(t, x, \=y) - Gl(t, x, \~y)) \geq L0\| \=y  - \~y\| 22,

which holds for all (t, x) \in \BbbR + \times \BbbR m and \=y, \~y \in \BbbR n
+, where Gl denotes the lth com-

ponent of the function G. Moreover, we assume that there exists a constant LG > 0
such that

\| G(t, x, \=y) - G(t, x, \~y)\| 2 \leq LG\| \=y  - \~y\| 2 \forall (t, x) \in \BbbR + \times \BbbR m, \=y, \~y \in \BbbR n
+.(2.2)

The property of uniform P-function, together with the Lipschitz condition, for the
function G implies the following lemma.

Lemma 2.1 (Theorem 5.1 in [26]). Suppose the function G(t, x, y) satisfies (2.1)--
(2.2). Then, the nonlinear complementarity problem 0 \leq y \bot G(t, x, y) \geq 0 has
a unique solution \scrY (x) for any (t, x) \in \BbbR + \times \BbbR m, which is a Lipschitz continuous
function of x at a fixed t. Particularly, there exists a constant \eta t > 0 such that
\| \scrY (\=x) - \scrY (\~x)\| 2 \leq \eta t\| \=x - \~x\| 2.

Remark 2.1. The property of uniform P-function resembles the notion of ``point-
wise strong regularity"" discussed by Pang and Shen in [24]. The assumption of point-
wise strong regularity is weaker than the assumption of uniform P-function property,
and a local Lipschitz solution can result in a specific NCP solution, which is similar
to the statements of Lemma 2.1.

We next assume the following Lipschitz conditions for F (t, x, y):

\langle F (t, \=x, y) - F (t, \~x, y), \=x - \~x\rangle \leq L1\| \=x - \~x\| 22 \forall (t, y) \in \BbbR + \times \BbbR n
+, \=x, \~x \in \BbbR m,

\| F (t, x, \=y) - F (t, x, \~y)\| 2 \leq L2\| \=y  - \~y\| 2 \forall (t, x) \in \BbbR + \times \BbbR m, \=y, \~y \in \BbbR n
+,

(2.3)

where \langle \cdot \rangle is the standard Euclidean inner product, L1 \in ( - \infty ,\infty ) and L2 > 0.
The first condition in (2.3) is called one-sided Lipschitz condition, and L1 can be
positive or negative. The following lemma (see Appendix A for the proof) about the
combinatorial identities is useful for the convergence analysis for method (1.11).

Lemma 2.2. Let r > 0 and \psi (r, J, k) =
\sum J

j1=1

\sum j1
j2=1 \cdot \cdot \cdot 

\sum jk - 1

jk=1 r
J - jk . Then, we

have

\psi (r, J, k) =

\left\{           
1

(1 - r)k
 - 
\sum k

l=1

\Biggl( 
J + k  - l  - 1

k  - l

\Biggr) 
rJ

(1 - r)l
, r \not = 1,\Biggl( 

J + k  - 1

k

\Biggr) 
, r = 1.

(2.4)

Theorem 2.3. For problem (1.1), suppose the functions G and F satisfy (2.1),
(2.2), and (2.3). Then, for method (1.11) the error ekj = xj  - xkj satisfies

max
0\leq j\leq J

\| ekj \| 2 \leq 

\left\{   (h\widetilde \eta )k\psi (1, J, k)max0\leq j\leq J \| e0j\| 2 if L1 = 0,

\psi ((1 - hL1)
 - 1, J, k)

\Bigl( 
h\widetilde \eta 

1 - hL1

\Bigr) k
max1\leq j\leq J \| e0j\| 2 if L1 \not = 0,

(2.5)

provided hL1 < 1, where \widetilde \eta = L2\eta and xj is the converged solution (i.e., the solution
of the fully nonlinear one-step problem (1.4)).
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Proof. By using Lemma 2.1, we represent yk+1
j as \scrY (xkj ) and the converged solu-

tion yj in (1.4) as \scrY (xj). Therefore, we can rewrite (1.4) and (1.11) as

xj = xj - 1 + hF (tj , xj ,\scrY (xj)), xk+1
j = xk+1

j - 1 + hF (tj , x
k+1
j ,\scrY (xkj )).

For the simplicity of notation, we let ekj = xj  - xkj , q = \scrY (xj), and q
k = \scrY (xkj ). Then,

ek+1
j = ek+1

j - 1 + h
\bigl[ 
F (tj , xj , q) - F (tj , x

k+1
j , qk)

\bigr] 
.

To get an estimate of \| ek+1
j \| 2, we consider the following inner product:

\langle ek+1
j , ek+1

j \rangle = \langle ek+1
j , ek+1

j - 1\rangle + h\langle ek+1
j , F (tj , xj , q) - F (tj , x

k+1
j , q)\rangle 

+ h\langle ek+1
j , F (tj , x

k+1
j , q) - F (tj , x

k+1
j , qk)\rangle .

By using the Cauchy--Schwarz inequality and the two Lipschitz conditions in (2.3),
we get

\| ek+1
j \| 22 \leq \| ek+1

j \| 2\| ek+1
j - 1\| 2 + hL1\| ek+1

j \| 22 + hL2\| ek+1
j \| 2\| q  - qk\| 2.(2.6)

For the last term in (2.6), by using Lemma 2.1 it holds that

\| q  - qk\| 2 = \| \scrY (xj) - \scrY (xkj )\| 2 \leq \eta \| ekj \| 2.

Substituting this into (2.6) gives \| ek+1
j \| 2 \leq \| ek+1

j - 1\| 2+hL1\| ek+1
j \| 2+h\widetilde \eta \| ekj \| 2, with \widetilde \eta =

L2\eta . The assumption hL1 < 1 implies \| ek+1
j \| 2 \leq 1

1 - hL1
\| ek+1

j - 1\| 2 +
h\widetilde \eta 

1 - hL1
\| ekj \| 2.

Let \{ \epsilon kj \} Jj=0 be the sequence defined by

\epsilon k+1
j =

1

1 - hL1
\epsilon k+1
j - 1 +

h\widetilde \eta 
1 - hL1

\epsilon kj , with \{ \epsilon 0j = \| e0j\| 2\} Jj=0 and \{ \epsilon k0 = 0\} k\geq 0.

It is clear \| ekj \| 2 \leq \epsilon kj . So, it suffices to establish a suitable inequality between

max1\leq i\leq J \epsilon 
k
j and max1\leq i\leq J \epsilon 

0
j . We have

\epsilon k+1
j =

h\widetilde \eta 
1 - hL1

\sum j

l=1
(1 - hL1)

 - (j - l)
\epsilon kl = h\widetilde \eta \sum j

l=1
(1 - hL1)

l - j - 1
\epsilon kl ,(2.7)

and a successive application of this relation yields

\epsilon kj = (h\widetilde \eta )k\sum j

j1=1

\sum j1

j2=1
\cdot \cdot \cdot 
\sum jk - 1

jk=1
(1 - hL1)

jk - j - k
\epsilon 0jk ,

which gives \epsilon kj \leq 
\bigl[ 
(h\widetilde \eta )k\sum j

j1=1

\sum j1
j2=1 \cdot \cdot \cdot 

\sum jk - 1

jk=1 (1 - hL1)
jk - j - k\bigr] 

max0\leq l\leq j \epsilon 
0
l . This

relation holds for all j \in \{ 0, 1, . . . , J\} , and we therefore get

max
0\leq j\leq J

\epsilon kj \leq 
\biggl( 

h\widetilde \eta 
1 - hL1

\biggr) k \biggl[ \sum J

j1=1

\sum j1

j2=1
\cdot \cdot \cdot 
\sum jk - 1

jk=1
(1 - hL1)

jk - J

\biggr] 
max
0\leq j\leq J

\epsilon 0j .(2.8)

It remains to estimate the nested summation in (2.8). We consider the following two

cases. Let r = 1
1 - hL1

. Then, it holds that
\sum J

j1=1

\sum j1
j2=1 \cdot \cdot \cdot 

\sum jk - 1

jk=1 (1 - hL1)
jk - J

=
\psi (r, J, k), where \psi is the function given by Lemma 2.2. Applying Lemma 2.2 gives
the desired result (2.5).

Based on Theorem 2.3, we next study the asymptotic convergence rate of method
(1.11) in the case that the step-size h approaches zero. Such an asymptotic con-
vergence analysis gives more convenient estimate of the convergence rate. We will
distinguish two situations:

1. method (1.11) is used with a fixed number of time points, i.e., J is fixed;
2. method (1.11) is used with a fixed length of time interval, i.e., T = hJ is

fixed.
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2.1. Asymptotic convergence rate when \bfitJ is fixed. We first consider the
case that the iterative method (1.11) is applied to a fixed number of time steps, i.e.,
J is fixed. Based on Theorem 2.3 we have the following result.

Theorem 2.4. Under the assumptions of Theorem 2.3, it holds for k \gg 1 that

max
0\leq j\leq J

\| ekj \| 2 \leq \rho k max
0\leq j\leq J

\| e0j\| 2,(2.9)

where \rho = h\widetilde \eta 
1 - hL1

= \scrO (h) and \widetilde \eta = \eta L2, provided h(L1 + \widetilde \eta ) < 1 and J is fixed.

Proof. To see this, we need to use\biggl( 
J + k  - 1

k

\biggr) 
\leq (1 + k)J - 1,

which can be verified directly. For the case L1 = 0, from Theorem 2.3 we have

lim
k\rightarrow \infty 

k

\sqrt{} \biggl( 
J + k  - 1

k

\biggr) 
\leq lim

k\rightarrow \infty 

\Bigl( 
e(J - 1)

log(1+k)
k

\Bigr) 
= 1.(2.10)

This proves (2.9) for the case L1 = 0 in Theorem 2.3. We next consider the case
L1 \not = 0. First, for L1 > 0 it holds that 1  - hL1 \in (0, 1) and then by using Lemma
2.2 we have

\psi ((1 - hL1)
 - 1, J, k) \leq 1

(1 - hL1)J
\psi (1, J, k) =

1

(1 - hL1)J

\biggl( 
J + k  - 1

k

\biggr) 
.

Then, by using (2.10) we have limk\rightarrow \infty 
k
\sqrt{} 
\psi ((1 - hL1) - 1, J, k) \leq 1 since

lim
k

k

\sqrt{} 
(1 - hL1) - J = 1.

Second, for L1 < 0 we have (1 - hL1)
 - 1 < 1, and therefore,

\psi ((1 - hL1)
 - 1, J, k) \leq \psi (1, J, k) =

\biggl( 
J + k  - 1

k

\biggr) 
.

Again, by using (2.10) we have limk\rightarrow \infty 
k
\sqrt{} 
\psi ((1 - hL1) - 1, J, k) \leq 1.

2.2. Asymptotic convergence rate when \bfitT = \bfith \bfitJ is fixed. Theorem 2.4
implies that if the number of time points is fixed, a smaller step-size h results in
faster convergence for method (1.11). For a fixed length of time interval, say t \in [0, T ]
with T being a fixed quantity, this conclusion does not hold, because in this case J
increases linearly as h reduces, and therefore, the limit in (2.10) is not correct. When
hJ is fixed and h\rightarrow 0, method (1.11) reverts to the following continuous analogue:
(2.11)
0 \leq yk+1(t) \bot G(t, xk(t), yk+1(t)) \geq 0, \.xk+1(t) = F (t, xk+1(t), yk+1(t)), t \in (0, T ).

Theorem 2.5. Under the assumption of Theorem 2.3, it holds that

\| xk(t) - x(t)\| 2 \leq max\{ 1, eL1t\} (t\widetilde \eta )k
k!

sup
t\in [0,T ]

\| x0(t) - x(t)\| 2, t \in (0, T ),(2.12)

where \widetilde \eta = L2\eta and x(t) is the converged solution of (2.11).
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Proof. In (2.11), according to Lemma 2.1 we represent yk+1(t) as \scrY (xk(t)) and
then we rewrite (2.11) as

\.xk+1(t) = F (t, xk+1(t),\scrY (xk(t))), t \in (0, T ),(2.13)

where xk(0) = x0 for all k \geq 0. Similarly, we can rewrite (1.1) as

\.x(t) = F (t, x(t),\scrY (x(t))), t \in (0, T ),(2.14)

where x(0) = x0. Let e
k(t) = xk(t) - x(t). Then, from (2.13) and (2.14) we have

\.ek+1(t) = F (t, xk+1(t),\scrY (xk(t))) - F (t, x(t),\scrY (x(t))), t \in (0, T ),(2.15)

where ek(0) = 0 for all k \geq 0.
For the Euclidean inner product, it holds for any differentiable function e(t) \not = 0

that

(2.16)

\Biggl\{ 
d\| e(t)\| 2

2

dt = 2\langle \.e(t), e(t)\rangle ,
d\| e(t)\| 2

2

dt = 2\| e(t)\| 2 d\| e(t)\| 2

dt

\Rightarrow \| e(t)\| 2
d\| e(t)\| 2

dt
= \langle \.e(t), e(t)\rangle .

Applying this to differential equation (2.15) gives

\| ek(t)\| 2
d\| ek(t)\| 2

dt
= \langle \.ek(t), ek(t)\rangle = \langle F (t, xk,\scrY (xk - 1)) - F (t, x,\scrY (x)), xk  - x\rangle 

= \langle F (t, xk,\scrY (xk - 1)) - F (t, x,\scrY (xk - 1)), xk  - x\rangle 
+ \langle F (t, x,\scrY (xk - 1)) - F (t, x,\scrY (x)), xk  - x\rangle 
\leq L1\| ek(t)\| 22 + L2\eta \| ek - 1(t)\| 2\| ek(t)\| 2,

where for the ``\leq "" we used (2.3) and Lemma 2.1. We have

d\| ek(t)\| 2
dt

(t) \leq L1\| ek(t)\| 2 + \widetilde \eta \| ek - 1(t)\| 2, t \in (0, T ),

where \widetilde \eta = L2\eta and \zeta k(0) = 0 for all k \geq 0, i.e.,

(2.17) \| ek(t)\| 2 \leq \widetilde \eta \int t

0

eL1(t - s)\| ek - 1(s)\| 2ds, t \in (0, T ).

Using (2.17) recursively gives

\| ek(t)\| 2

\leq \widetilde \eta k

\biggl( \int t

0

eL1(t - s1)

\int s1

0

eL1(s1 - s2) \cdot \cdot \cdot 
\int sk - 1

0

eL1(sk - 1 - sk)dsk \cdot \cdot \cdot ds1
\biggr) 

\mathrm{s}\mathrm{u}\mathrm{p}
t\in [0,T ]

\| e0(t)\| 2.

The k-fold integral can be estimated as follows:\int t

0

eL1(t - s1)

\int s1

0

eL1(s1 - s2) \cdot \cdot \cdot 
\int sk - 1

0

eL1(sk - 1 - sk)dsk \cdot \cdot \cdot ds1

= eL1t

\int t

0

\int s1

0

\cdot \cdot \cdot 
\int sk - 1

0

e - L1skdsk \cdot \cdot \cdot dts1

\leq eL1t max\{ 1, e - L1t\} 
\int t

0

\int s1

0

\cdot \cdot \cdot 
\int sk - 1

0

1 dsk \cdot \cdot \cdot ds1 = max\{ 1, eL1t\} t
k

k!
.

From this, we get \zeta k(t) \leq max\{ 1,eL1t\} (t\widetilde \eta )k
k! supt\in [0,T ] \zeta 

0(t).

D
ow

nl
oa

de
d 

12
/2

2/
20

 to
 1

15
.1

56
.1

41
.5

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE METHODS OF GAUSS--SEIDEL STYLE FOR DNCPs 3397

Remark 2.2 (about the convergence rate). From Theorems 2.4 and 2.5, we see
that method (1.11) has two different convergence rates. If J is fixed, the method
converges with a rate \rho = \scrO (h) and this implies that the method converges if a smaller
step-size h is used. In particular, for J = 1 we know that the iterative algorithm (1.8)
used for each single time point converges with a rate \scrO (h), since in this case the
multipoint algorithm (1.11) reduces to (1.8). If the length of time interval is fixed,
i.e., the quantity T is fixed and J increases as h decreases, the factorial term k! in
(2.12) implies that the method converges superlinearly with a rate independent of h.

Remark 2.3. From Theorems 2.3 and 2.5 we see that a negative Lipschitz constant
L1 results in faster convergence, compared to a positive L1. In the linear case, i.e., for
DLCP (1.3), L1 is negative when the matrix A is similar to its Jordan canonical form
via an orthogonal transformation and the real parts of the eigenvalues are negative.
This is often the case when the differential system arises from semidiscretizing a partial
differential equation, e.g., the parabolic Signorini problems [14].

2.3. The case of nonlinear P\bfzero -function. The requirement thatG is a uniform
P-function can be slightly relaxed, namely G is a P0-function of y, i.e., G still satisfies
(2.1) but L0 = 0. In this case, we can use the idea of regularization [10] to deal with
DNCP (1.1). Precisely, with a small quantity \varepsilon > 0, we rewrite (1.1) as

\.x(t) = F (t, x(t), y(t)), 0 \leq y(t) \bot \widehat G(t, x(t), y(t)) \geq 0, \widehat G(t, x, y) = G(t, x, y) + \varepsilon y.

(2.18)

Now, it is clear that \widehat G is a uniform P-function of y. It was proved in [10] that the
solution y\varepsilon (t) of the regularized complementarity system in (2.18) approaches y(t)---a
solution of the original complementarity system in (1.1) if (1.1) has a solution, when
\varepsilon \rightarrow 0+. Hence, with a suitable regularization parameter \varepsilon > 0, which is comparable
with the temporal discretization error \scrO (h), all the results obtained in this section
are directly applicable to (2.18).

3. Convergence analysis in the case of linear complementarity. We now
consider the case that the function G(t, x, y) is not a P-function with respect to y, in
the following DNCP form:

(3.1) \.x(t) = F (t, x(t), y(t)), 0 \leq y(t) \bot My(t) + \widetilde G(t, x(t)) \geq 0,

where x(0) = x0 and \widetilde G : \BbbR + \times \BbbR m \rightarrow \BbbR n can be a nonlinear function of x. In
particular, we consider the case that M is a positive semidefinite matrix. (The case
that M is a Z-matrix can be treated similarly; see Remark 3.1.) DNCPs (3.1) have
wide applications; see, e.g., [13, 26, 30]. For positive semidefinite matrix M , the LCS

in (3.1) has a unique least-norm solution if the feasible set FEA(M, \widetilde G(t, x)) := \{ y| y \geq 
0, \widetilde G(t, x)+My \geq 0\} is nonempty. Choosing the least-norm solution from the solution
set leads to

(3.2) \.x(t) = F (t, x(t), y(t)), y(t) = argmin\{ \| v\| 2 : 0 \leq v \bot Mv + \widetilde G(t, x(t)) \geq 0\} .

Then, similar to (1.11) we define the following iterative method:

(3.3)

\Biggl\{ 
yk+1
j = argmin\{ \| v\| 2 : 0 \leq v \bot Mv + \widetilde G(tj , xkj ) \geq 0\} , j = 1, 2, . . . , J,

xk+1
j = xk+1

j - 1 + hF (tj , x
k+1
j , yk+1

j ), j = 1, 2, . . . , J.

The assumption that M is a positive semidefinite matrix, together with FEA(M,\widetilde G(t, x)) \not = \emptyset , guarantees the unique existence of the least-norm solution of the LCS,
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but this cannot be used as a criterion in practice, because the solution x(t) is not
known a priori, and therefore, it is difficult to justify whether the feasible set is empty
or not. Our task in this section is to answer the following two questions:
1. Under what conditions does DNCP (3.2) have a unique solution (x(t), y(t))?
2. Under what conditions does the iterative method (3.3) converge?

The following lemma plays a central role for our analysis.

Lemma 3.1 (Theorem 2.3 in [9]). Let M \in \BbbR n\times n be a positive semidefinite
matrix and q1, q2 \in \BbbR n such that FEA(M, q1) \not = \emptyset and FEA(M, q2) \not = \emptyset . Then, we
have \| \scrY (q1) - \scrY (q2)\| 2 \leq \eta 0\| q1  - q2\| 2, where \scrY (q) denotes the least-norm solution of
0 \leq y \bot q +My \geq 0 and \eta 0 > 0 is a constant.

We assume that the nonlinear function \widetilde G(t, x) satisfies the following Lipschitz
condition:

\| \widetilde G(t, x1) - \widetilde G(t, x2)\| 2 \leq \eta 1\| x1  - x2\| 2 \forall t \in \BbbR +, x1, x2 \in \BbbR m.(3.4)

Theorem 3.2 (unique existence of the solution of (3.2)). For DNCP (3.2) with
M being a positive semidefinite matrix, suppose F (t, x, y) satisfies the Lipschitz con-

dition (2.3) with L1 \in \BbbR and L2 > 0. Assume that the nonlinear function \widetilde G satisfies
the Lipschitz condition (3.4) and that there exist T > 0 and \beta > 0 such that

(3.5a) FEA(M, \widetilde G(t, v)) \not = \emptyset for t \in [0, T ] and v \in \scrB (x0, \beta ) := \{ v : \| v - x0\| 2 \leq \beta \} .

Then, the DNCP (3.2) has a unique least-norm solution (x(t), y(t)) \in C1(0, t)\times C(0, t)
in the interval t \in (0, T \ast ), with T \ast being defined by

T \ast =

\Biggl\{ 
T if L1 \leq  - \widetilde \eta \beta +C0

\beta ,

min
\Bigl\{ 
T, 1

L1
log
\Bigl( 
1 + L1\beta \widetilde \eta \beta +C0

\Bigr) \Bigr\} 
if L1 >  - \widetilde \eta \beta +C0

\beta ,
(3.5b)

where \widetilde \eta = L2\eta 0\eta 1, C0 = maxt\in [0,T ] \| F (x0,\scrY ( \widetilde G(t, x0))\| 2 and \scrY ( \widetilde G(t, x0)) denotes the

least-norm solution of the complementarity system 0 \leq y \bot \widetilde G(t, x0) +My \geq 0.

The condition (3.5a) shall be used throughout this section. It is essentially
the same assumption that the authors used in [9] to study the semismooth Newton
method. With the quantity T \ast defined by (3.5b) it holds that

eL1t  - 1

L1
\leq \beta \widetilde \eta \beta + C0

for t \leq T \ast ,(3.6)

where for L1 = 0 the left quantity is defined in the limit, i.e., limL1\rightarrow 0
eL1t - 1

L1
= t.

Proof. Let \{ xk(t), yk(t)\} k\geq 0 be the functional sequence generated by

yk+1(t) = argmin\{ \| v\| 2 : 0 \leq v \bot Mv + \widetilde G(t, xk(t)) \geq 0\} ,
\.xk+1(t) = F (t, xk+1(t), yk+1(t)),

where xk(0) = x0 for k \geq 0. For the initial iterate, i.e., k = 0, we choose x0(t) = x0.
We claim that starting from this initial guess every iterate xk(t) still lies in the ball
\scrB (x0, \beta ) under condition (3.5b).

For k = 0, since x0(t) lies in the ball \scrB (x0, \beta ) we know that y1(t) is uniquely

existent for t \in [0, T ]. Hence, \.x1(t) = F (t, x1(t),\scrY ( \widetilde G(t, x0(t)))). We have

d[x1(t) - x0(t)]

dt
=
\Bigl[ 
F (t, x1(t),\scrY ( \widetilde G(t, x0(t)))) - F (t, x0(t),\scrY ( \widetilde G(t, x0(t))))\Bigr] 
+ F (t, x0(t),\scrY ( \widetilde G(t, x0(t)))).
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By using (2.16) and the Lipschitz condition for F (cf. (2.3)), we have

d\| x1(t) - x0(t)\| 2
dt

\leq L1\| x1(t) - x0(t)\| 2 + C0 \Rightarrow \| x1(t) - x0(t)\| 2 \leq C0
eL1t  - 1

L1
.

This, together with (3.6), implies that under condition (3.5b) the solution x1(t) lies
in the ball \scrB (x0, \beta ) for t \in [0, T \ast ].

Suppose xk(t) \in \scrB (x0, \beta ) for t \in [0, T \ast ]. Then, we have

d[xk+1(t) - x0(t)]

dt
=
\Bigl[ 
F (t, xk+1(t),\scrY ( \widetilde G(t, xk(t)))) - F (t, x0(t),\scrY ( \widetilde G(t, xk(t))))\Bigr] 
+
\Bigl[ 
F (t, x0(t),\scrY ( \widetilde G(t, xk(t)))) - F (t, x0(t),\scrY ( \widetilde G(t, x0(t))))\Bigr] 

+ F (t, x0(t),\scrY ( \widetilde G(t, x0(t)))).
Similar to the deduction for \| x1(t) - x0(t)\| 2, by using Lemma 3.1 and the Lipschitz
condition (3.4) it holds that

d\| xk+1(t) - x0(t)\| 2
dt

\leq L1\| xk+1(t) - x0(t)\| 2 + L2\eta 0\eta 1\| xk(t) - x0(t)\| 2 + C0.

This implies

\| xk+1(t) - x0(t)\| 2 \leq 
\int t

0

eL1(t - s)[\widetilde \eta \| xk(s) - x0(s)\| 2 + C0]ds

\leq 
\int t

0

eL1(t - s)(\widetilde \eta \beta + C0)ds = (\widetilde \eta \beta + C0)
eL1t  - 1

L1
.

By using (3.6), it holds that \| xk+1(t) - x0(t)\| 2 \leq \beta for t \leq T \ast , which implies xk+1(t) \in 
\scrB (x0, \beta ).

Now, for any k \geq 0 we have xk(t), xk+1(t) \in \scrB (x0, \beta ) for t \in [0, T \ast ], and therefore,

d[xk+1(t) - xk(t)]

dt
= F (t, xk+1(t),\scrY ( \widetilde G(t, xk(t)))) - F (t, xk(t),\scrY ( \widetilde G(t, xk(t))))

+ F (t, xk(t),\scrY ( \widetilde G(t, xk(t)))) - F (t, xk(t),\scrY ( \widetilde G(t, xk - 1(t)))).

(3.7a)

By using (2.16) and the Lipschitz condition for F (cf. (2.3)), we get

d\| xk+1(t) - xk(t)\| 2
dt

\leq L1\| xk+1(t) - xk(t)\| 2 + \widetilde \eta \| xk(t) - xk - 1(t)\| 2,(3.7b)

which, after an integration, gives \| xk+1(t) - xk(t)\| 2 \leq \widetilde \eta \int t

0
eL1(t - s)\| xk(s) - xk - 1(s)\| 2ds.

Then, similar to the proof of Theorem 2.5 we have

\| xk+1(t) - xk(t)\| 2 \leq 
\bigl( \widetilde \eta max\{ 1, eL1t\} 

\bigr) k tk
k!

max
s\in [0,t]

\| x1(s) - x0(s)\| 2.

Clearly, for any \epsilon > 0 there exists some integer K > \widetilde \eta max\{ 1, eL1T
\ast \} T \ast such that

(3.8)
1

1 - \widetilde \eta max\{ 1,eL1T\ast \} T\ast 

K+1

\bigl( \widetilde \eta max\{ 1, eL1T
\ast \} T \ast \bigr) K

K!
max

t\in [0,T\ast ]
\| x1(t) - x0(t)\| 2 < \epsilon .
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Then, for any integers K1 and K2 satisfying K2 > K1 \geq K, it holds that

\| xK2(t) - xK1(t)\| 2 \leq 
\sum K2 - K1 - 1

k=0
\| xK1+k(t) - xK1+k+1(t)\| 2

\leq 

\Biggl( \sum K2 - K1 - 1

k=0

\bigl( \widetilde \eta max\{ 1, eL1T
\ast \} T \ast \bigr) K1+k

(K1 + k)!

\Biggr) 
max

t\in [0,T\ast ]
\| x1(t) - x0(t)\| 2

\leq 1

1 - \widetilde \eta max\{ 1,eL1T\ast \} T\ast 

K+1

\bigl( \widetilde \eta max\{ 1, eL1T
\ast \} T \ast \bigr) K1

K1!
max

t\in [0,T\ast ]
\| x1(t) - x0(t)\| 2.

This, together with (3.8), implies \| xK2(t) - xK1(t)\| 2 < \epsilon . Therefore, \{ xk(t)\} k\geq 0 is a
Cauchy sequence for t \in [0, T \ast ]. Let limk\rightarrow \infty xk(t) = x\ast (t). Then, it is easy to know
that x\ast (t) is the solution of DNCP (3.2) for t \in [0, T \ast ].

To prove uniqueness of x\ast (t), we suppose x\ast 1(t) and x\ast 2(t) are solutions of (3.2).

Then, similar to (3.7a)--(3.7b) we have
d\| x\ast 

1(t) - x\ast 
2(t)\| 2

dt \leq (L1 + \widetilde \eta )\| x\ast 1(t)  - x\ast 2(t)\| 2.

This gives
d(e - (L1+\widetilde \eta )t\| x\ast 

1(t) - x\ast 
2(t)\| 2)

dt \leq 0. Since x\ast 1(0) = x\ast 2(0), it holds that \| x\ast 1(t)  - 
x\ast 2(t)\| 2 \leq 0. Hence, x\ast 1(t) \equiv x\ast 2(t) for t \in [0, T \ast ].

We next analyze the convergence of the iterative method (3.3). For the uniform
P-function case, the Lipschitz continuity of \scrY (q) plays a central role for proving the
convergence of method (1.11). Comparing Lemma 3.1 to Lemma 2.1, we see that, to
ensure such a Lipschitz continuity in the LCS case with positive semidefinite coefficient
matrix M , we need SOL(M, q) \not = \emptyset as an additional condition. Therefore, it is clear

that for the least-norm iterative method (3.3) if FEA(M, \widetilde G(t, xkj )) \not = \emptyset (\forall j = 1, . . . , J)
for each iteration, the results given by Theorems 2.3--2.5 still hold.

Theorem 3.3. For DNCP (3.2) with M being a positive semidefinite matrix, let

F (t, x, y) satisfy the Lipschitz condition (2.3) and \widetilde G satisfy (3.4). Suppose (3.5a)
holds for some constants T > 0 and \beta > 0. Then, the least-norm iterative method
(3.3) for the time points \{ tj\} J

\ast 

j=0 is well-defined, i.e.,

(3.9a) FEA(M, \widetilde G(t, xkj )) \not = \emptyset \forall j \in \{ 0, 1, . . . , J\ast \} , \forall k \geq 1,

provided \{ x0j = x0\} Jj=1, T
\ast \leq T , and the following conditions are satisfied:

(3.9b) hL1 < 1,

\left\{     
J\ast = J if L1 \leq  - \widetilde \eta \beta +C0

\beta ,

J\ast = min

\biggl\{ 
J,

\biggl[ 
log

\Bigl( 
1+

\beta L1\widetilde \eta \beta +C0

\Bigr) 
log((1 - hL1) - 1)

\biggr] \biggr\} 
if L1 >  - \widetilde \eta \beta +C0

\beta ,

where J = T
h , C0 = maxJj=0 \| F (t, x0,\scrY ( \widetilde G(tj , x0)))\| 2, \widetilde \eta = L2\eta 0\eta 1 (with \eta 0 being the

constant given by Lemma 3.1 and \eta 1 being given by (3.4)), and [v] denotes the integer
part of v \in \BbbR .

Similar to (3.6), under condition (3.9b) it is easy to verify that

C0 + \widetilde \eta \beta 
L1

\biggl[ 
1

(1 - hL1)j
 - 1

\biggr] 
\leq \beta \forall j \in \{ 0, 1, . . . , J\ast \} .(3.10)

Proof. The proof given below can be regarded as a discrete version of the proof
of Theorem 3.2. Since \{ x0j\} J

\ast 

j=0 \subseteq \scrB (x0, \beta ), from Lemma 3.1 we know that \{ \scrY ( \widetilde G(tj ,
x0j ))\} J

\ast 

j=0 are uniquely existent. Hence, by using the first Lipschitz condition in (2.3)
we have

\| x1j  - x0j\| 2 \leq \| x1j - 1  - x0j - 1\| 2 + hL1\| x1j  - x0j\| 2 + hC0,
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i.e., \| x1j  - x0j\| 2 \leq 1
1 - hL1

\| x1j - 1  - x0j - 1\| 2 + h
1 - hL1

C0. Since x
1
0 = x00 = x0, it holds that

\| x1j  - x0j\| 2 \leq hC0

1 - hL1

\sum j - 1

l=0

1

(1 - hL1)l
=
C0

L1

\biggl( 
1

(1 - hL1)j
 - 1

\biggr) 
.(3.11)

Hence, from (3.10) we get \| x1j - x0j\| 2 \leq \beta for j \in \{ 0, 1, . . . , J\ast \} and thus x1j \in \scrB (x0, \beta ).
To perform an induction proof, we assume xkj \in \scrB (x0, \beta ) for j = 0, 1, . . . , J\ast .

Then, by using Lemma 3.1 the sequence \{ \scrY ( \widetilde G(tj , xkj ))\} J\ast 

j=0 is uniquely existent. There-
fore,

\| xk+1
j  - x0j\| 2 \leq \| xk+1

j - 1  - x0j - 1\| 2 + hL1\| xk+1
j  - x0j\| 2 + h\widetilde \eta \| xkj  - x0j\| 2 + hC0.

Similar to (3.11), this gives

\| xk+1
j  - x0j\| 2 \leq h(C0 + \widetilde \eta \beta )

1 - hL1

\sum j - 1

l=0

1

(1 - hL1)l
=
C0 + \widetilde \eta \beta 
L1

\biggl( 
1

(1 - hL1)j
 - 1

\biggr) 
.

Now, by using (3.10) again we have \| xk+1
j  - x0\| 2 \leq \beta , i.e., xk+1

j \in \scrB (x0, \beta ) for
j \in \{ 0, 1, . . . , J\ast \} , and this completes the proof of (3.9a).

Remark 3.1 (the case M is a Z-matrix). At the end of this section, we consider
the case that the matrixM in (3.1) is a Z-matrix, which is another representative case
in the field of complementarity problems [13, 16]. In this case, there exists a unique

least-element solution5 for the LCS in (3.1) if the feasible set FEA(M, \widetilde G(t, x)) :=

\{ y| y \geq 0, \widetilde G(t, x) +My \geq 0\} is nonempty; see [9]. This leads to the following least-
element DNCP:

(3.12) \.x(t) = F (t, x(t), y(t)), y(t) = argmin\{ \| v\| 1 : v \geq 0, \widetilde G(t, x(t)) +Mv \geq 0\} .

For (3.12), similar to (3.3) we define the iterative method as

(3.13)

\Biggl\{ 
yk+1
j = argmin\{ \| v\| 1 : v \geq 0,Mv + \widetilde G(tj , xkj ) \geq 0\} , j = 1, 2, . . . , J,

xk+1
j = xk+1

j - 1 + hF (tj , x
k+1
j , yk+1

j ), j = 1, 2, . . . , J,

where xk0 = x0 for all k \geq 0. According to Theorem 2.3 in [9], the Lipschitz continuity
of the least-element solution of the LCS 0 \leq y \bot q+My \geq 0 holds as well; see Lemma
3.1. Hence, the results obtained in this section are directly applicable to (3.1) if M is
a Z-matrix.

4. Applications and numerical results. In this section, we show applications
of the proposed iterative method for the nonsmooth circuit systems and the projected
dynamic systems. For each application, we provide numerical results to validate the
convergence properties of the proposed iterative method (1.11). The iteration stops
when

(4.1) max0\leq j\leq J \| xkj  - xj\| 2 \leq 10 - 8,

where \{ xj\} Jj=1 denotes the converged solution.

5The least-element solution ymin is a solution of 0 \leq y \bot My + \widetilde G(t, x) \geq 0 satisfying ymin \leq y

for all y \in FEA(M, \widetilde G(t, x)).
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4.1. The 4-diode bridge wave rectifier. The 4-diode bridge wave rectifier
shown in Figure 4.1 is a widely studied circuit model; see, e.g., [1, 4, 10, 16, 18, 20].
The circuit consists of a capacitor C > 0 with randomly perturbed value and a
nonlinear resistor R, which lie inside the bridge formed by four ideal diodes. Let x
be the voltage for the capacitor. Let VDF1,DF2 and IDF1,DF2 be the voltages and
currents for the diodes, respectively. Then, by applying Kirchhoff voltage/current
laws, we get the modified nodal analysis state equation described by a DNCP as
(see [1, Chapter 2] for more details)

C(\xi ) \.x(t, \xi ) =  - R(x(t, \xi )) +By(t, \xi ) + Is(t),

0 \leq y(t, \xi ) \bot Nx(t, \xi ) +My(t, \xi ) \geq 0,
(4.2a)

where x(0, \xi ) = 0, C(\xi ) denotes the capacitor with value perturbed by random variable
\xi = (\xi 1, \xi 2, . . . , \xi d)

\top , Is(t) is the current source (i.e., e(t) shown in Figure 4.1), and

B = [1, 0, 1, 0], N =

\left(    
1
0
1
0

\right)    , M =

\left(    
0  - 1 0 0
1 0 1  - 1
0  - 1 0 0
0 1 0 0

\right)    .(4.2b)

For the nonlinear resistor, the current source, and the random capacitor we use the
data

R(v) = ev/50  - 1 (Schottky resistor), Is(t) = 10 sin(18\pi t+ 2) - 0.5,

C(\xi ) = 1.8 +
\xi 1

1 + \xi 22
with

\Biggl\{ 
\xi 1 \in [ - 1, 1], uniform distribution,

\xi 2 \in ( - \infty ,\infty ), Gaussian distribution.

(4.2c)

Fig. 4.1. The circuit of a 4-diode bridge wave rectifier.

For circuit (4.2a)--(4.2c), the random source of the capacitor can be caused by
many factors, e.g., external environmental fluctuations such as temperature variation.
Such an uncertainty may lead to remarkable performance variations at both circuit
and system levels, and it cannot be ignored if we want to make a correct prediction of
the behavior of the circuit. Here, we are interested in the basic stochastic information
of the circuit, i.e., the mean values of x(t, \xi ) and y(t, \xi ) and the standard deviations.
To this end, we use the technique of generalized polynomial chaos (gPC) expansion [34]
together with the so-called stochastic testing strategy [35] to treat the random space.
The gPC expansion technique has gained increasing interest in recent years thanks to
its high order accuracy.

Briefly speaking, the gPC expansion technique transforms the random circuit
system to a deterministic system with larger size as follows:

\widehat CX(t) =  - R(X(t)) + \widehat BY (t) + \widehat Is(t), 0 \leq Y (t) \bot \widehat NX(t) + \widehat MY (t) \geq 0.(4.3)
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where X(t) \in \BbbR q, Y (t) \in \BbbR 4q, \widehat B = B \otimes Iq, \widehat C = diag(C1, C2, . . . , Cq), \widehat M = M \otimes Iq,\widehat N = N \otimes Iq, \widehat Is(t) = Iq \otimes Is(t), Iq \in \BbbR q\times q is an identity matrix, and q denotes the
number of the gPC basis functions (for the numerical results given below q = 6). The
details for deriving the deterministic system (4.3) is given in Appendix B. SinceM is

a positive semidefinite matrix, the matrix \widehat M in (4.3) is a positive semidefinite matrix
as well. Thus, we choose for Y (t) the least-norm solution from the solution set of the
LCS in (4.3):

(4.4)

\widehat C \.X(t) =  - R(X(t)) + \widehat BY (t) + \widehat Is(t),
Y (t) = argmin

\Bigl\{ 
\| v\| 2 : 0 \leq v \bot \widehat Mv + \widehat NX(t) \geq 0

\Bigr\} 
.

We now apply method (3.3) to (4.4) in the case J = Nt, i.e., we do Gauss--
Seidel iterations for the whole time interval instead at each single time point (cf.
Remark 2.2). In each iteration the nonlinear equations at t = tj arising in the discrete
ODE system are solved by the fsolve command in MATLAB and the LCS is solved
by using the quadprog command in MATLAB according to [8]. In Figure 4.2, we
show the stochastic information of the circuit, i.e., the mean values and the standard
derivations of x(t, \xi ) and y(t, \xi ).6 For the complementarity variable y(t, \xi ), it holds
that \BbbE (y2,4(t, \xi )) \equiv 0 and that \BbbE (y1(t, \xi )) = \BbbE (y3(t, \xi )), so we show the stochastic
information for y1(t, \xi ) and y3(t, \xi ) together in the left column of Figure 4.2.

In Figure 4.3 we show the measured convergence rates of method (3.3) in two
situations: in the left subfigure we consider the case that the length of time interval
(i.e., T ) is fixed and the step-size h varies; in the right subfigure we consider the case
that the number of discrete time points (i.e., J = Nt) is fixed and h varies. We see
that the method converges superlinearly with a robust convergence rate with respect
to h, if T is fixed. In the case that J is fixed, the method converges faster when
the step-size h becomes smaller. All these numerical results confirm Remark 2.2 very
well.

As we mentioned in section 1, in each iteration of the iterative method (3.3) the
computation of the complementarity system at all the discrete time points is parallel.
We now show numerical results to illustrate that such an advantage can dramatically
reduce the computation time. To carry out the parallel experiments, we use the
following software and hardware configurations:

\bullet CPU: Intel Core i7-3770K 3.5 GHz and 32 GB RAM using gcc 4.8.1. A single
CPU was used for the sequential implementation of the proposed iterative
methods. The codes were tested with gcc's fast math option (ffast math).

\bullet GPU: NVIDIA GeForce GTX 660 installed in a system with the above de-
scribed CPU. The GPU operates at 1.10 GHz clock speed and consists of
five multiprocessors (each contains 192 CUDA cores). We compiled the code
using CUDA version 5.5 in combination with the gcc 4.8.1 compiler with fast
math option (use fast math).

In Figure 4.4, we show the computation time (measured in seconds) for the semi-
smooth Newton method and the iterative method (3.3). The semismooth Newton
method is implemented in a sequential pattern by using a single CPU. For the new
iterative method (3.3), the complementarity system is solved in parallel by GPU.
Here, similar to Figure 4.3 we also consider two cases: the length of the time interval
is fixed (i.e., t \in [0, T ] with T = 0.2), and the number of time points is fixed (i.e.,

6Such stochastic information can be obtained from the solutions X(t) and Y (t) due to the theory
of the gPC expansion technique; see explanation in Appendix B.
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Fig. 4.2. Stochastic information of the 4-diode bridge wave rectifier. Top row: the mean values
of x(t, \xi ) (left) and y1,3(t, \xi ) (right). The shading region is filled by the solutions obtained by Monte
Carlo simulations with 10, 000 samples of \xi . Bottom row: standard derivations for x(t, \xi ) (left) and
y1,3(t, \xi ) (right).
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Fig. 4.3. Measured convergence rates of the least-norm iterative method (3.3) applied to (4.4).
Left: T = 0.2 is fixed and h varies. Right: J = 2000 is fixed and h varies (J = Nt = T/h denotes
the number of discrete time points). The (dotted) horizontal line indicates where the method should
stop in practice.

J = Nt = 2000). From the results shown in Figure 4.4, we see that in the parallel
circumstance the new iterative method needs much less computation time compared
to the semismooth Newton method. For example, for the cases T = 0.2 and h = 2 - 13

(left subfigure) the computation time for the semismooth Newton method is around
9587 seconds (\approx 158 minutes), while by parallel computation the time for the new
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iterative method is around 2023 seconds (\approx 34 minutes).
For the case J = Nt = 2000 (right subfigure), it is interesting to see that the

computation time for the new iterative method (3.3) decreases as h becomes smaller;
see Figure 4.4 on the right. This can be explained by using the convergence rate
\rho = \scrO (h) in the case of crossing a fixed number of time points, namely the new
iterative method converges faster as h becomes smaller; see Remark 2.2.
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Fig. 4.4. For DNCP (4.4), comparison with respect to computation time between the semi-
smooth Newton method and the new iterative method (3.3) with J = Nt. Left: the case T = 0.2 is
fixed and h varies from 2 - 7 to 2 - 13. Right: the case J = Nt = 2000 is fixed and h varies from 2 - 10

to 2 - 16 (in this case T decreases as h decreases).

4.2. A projected dynamic system: The spatial price equilibrium. Let
\Omega \subset \BbbR m be a convex set. The projected dynamic system is described by the equation
\.x(t) = F (t, x(t)) on the interior of \Omega , but on the boundary a modification is applied
to prevent the solution from leaving the constraint set \Omega . To be more specific, let \scrP \Omega 

be the projection operator that assigns to each vector x \in \BbbR m the vector in \Omega that is
closest to x, i.e., \scrP \Omega (x) = argminv\in \Omega \| x - v\| 2. Then the projected dynamical system
is defined by

(4.5) \.x(t) = \Pi \Omega (x(t);F (t, x(t))) with \Pi \Omega (x, v) = lim
\delta \rightarrow 0+

\scrP \Omega (x+ \delta v) - x

\delta 
.

In [23], Nagurney and Zhang mentioned several interesting applications of the pro-
jected dynamic systems, including the oligopolistic markets, the traffic networks, and
the spatial price equilibrium.

In this section, we consider the spatial price equilibrium problem, which can be
described as follows (see [23, Chapter 6] for more details). Suppose we have m supply
markets and n demand markets involved in the production and consumption of a ho-
mogeneous commodity under perfect competition. Denote a typical supply market by
i and a typical demand market by j. Let \theta j denote the supply and \gamma i the supply price
of the commodity at supply market i. Let dj denote the demand, and let \alpha j be the de-
mand price at demand market j. Let xij denote the nonnegative commodity shipment
between the supply and demand market pair (i, j), and let cij denote the unit transac-
tion cost associated with trading the commodity between i and j. The supply price at
any supply market depends on the supply of the commodity at every supply market,
that is, \gamma = \gamma (\theta ), where \gamma = (\gamma 1, . . . , \gamma m), \theta = (\theta 1, . . . , \theta m)\top . Similarly, the demand
price at any demand market depends on the demand of the commodity at every de-
mand market, i.e., \alpha = \alpha (d), where \alpha = (\alpha 1, . . . , \alpha n)

\top and d = (d1, . . . , dn)
\top . The
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unit transaction cost between a pair of supply and demand markets may depend upon
the shipments of the commodity between every pair of markets, that is, c = c(x), where
c = (c11, . . . , c1n, . . . , cm1, . . . , cmn)

\top and x = (x11, . . . , x1n, . . . , xm1, . . . , xmn)
\top . The

supplies, demands, and shipments of the commodity must satisfy the following feasi-
bility conditions:

\theta i =
\sum n

j=1
xij , i = 1, 2, . . . ,m,

dj =
\sum m

i=1
xij , j = 1, 2, . . . , n.

(4.6)

Define the excess price Fij , between a pair of markets (i, j), as

Fij(x) := \alpha j(d) - \gamma i(\theta ) - cij(x).(4.7)

In practice, we need to dynamically adjust the commodity shipments between the
supply and demand markets. Under perfect competition, the rate of change of the
commodity shipment between the supply and demand market pair (i, j) is in propor-
tion to the excess price Fij . This results in the following projected dynamic system:

\.x(t) = \Pi \Omega (x(t), F (x(t))),(4.8)

where F (x) = (F11(x), . . . , F1n(x), . . . , Fm1(x), . . . , Fmn(x))
\top . We are interested in

the case that the commodity shipment xij is nonnegative and is not larger than a
prescribed upper bound xmax. In this case, the domain \Omega can be described as

\Omega = \{ x \in \BbbR mn| \phi ij(x) \geq 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n\} , \phi ij(x) :=

\biggl[ 
xij

xmax  - xij

\biggr] 
.

(4.9)

According to [3, 19], the projected dynamic system (4.8) can be reformulated as
a DNCP:

\.x(t) = F (x(t)) + \Phi \top (x(t))y(t), 0 \leq \phi (x(t)) \bot y(t) \geq 0,(4.10)

where \Phi is the Jacobian matrix of \phi , i.e., \Phi = \partial \phi 
\partial x

. For the case (4.9), we have

\Phi =

\left[           

1
 - 1

1
 - 1

...
1
 - 1

\right]           
2mn\times mn

, \phi (x) = \Phi x+ b, b =

\left[           

0
xmax

0
xmax

...
0

xmax

\right]           
2mn\times 1

.(4.11)

Then, we can rewrite (4.10) as

\.x(t) = F (x(t)) + \Phi \top y(t), 0 \leq \Phi x(t) + b \bot y(t) \geq 0.(4.12)

Applying the implicit Euler method with a step-size h to (4.12) gives

xn+1 = xn + hF (xn+1) + h\Phi \top yn+1, 0 \leq \Phi xn+1 + b \bot yn+1 \geq 0,(4.13)
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where n = 0, 1, . . . , Nt. A direct application of the proposed iterative method to
(4.13) leads to

0 \leq \Phi xkn+1 + b \bot yk+1
n+1 \geq 0, xk+1

n+1 = xn + hF (xk+1
n+1) + h\Phi \top yk+1

n+1,

where k \geq 0 is the iteration index and for k = 0 the quantity x0n+1 is an initial guess.
However, this iteration process does not converge because the solution of the LCS is
always zero, i.e., yk+1

n+1 \equiv 0 for k \geq 0. To apply the method correctly, we first obtain
\Phi xn+1 from the discretized ODEs in (4.13) as

\Phi xn+1 = \Phi xn + h\Phi F (xn+1) + h\Phi \Phi \top yn+1,

and then by substituting \Phi xn+1 into the LCS we get

0 \leq \Phi xn + h\Phi F (xn+1) + h\Phi \Phi \top yn+1 + b \bot yn+1 \geq 0.

We now define the following iterations:

0 \leq yk+1
n+1 \bot 

\bigl( 
\Phi xn + h\Phi F (xkn+1) + b

\bigr) 
+ h\Phi \Phi \top yk+1

n+1 \geq 0,

xk+1
n+1 = xn + hF (xk+1

n+1) + h\Phi \top yk+1
n+1.

(4.14)
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Fig. 4.5. Evolution of the solutions of the projected system (left) and the original system
(without projection on the domain \Omega ). Here, a step-size h = 2 - 9 is used.

We consider a spatial market problem consisting of two supply markets and two
demand markers with the following data:

\gamma 1(\theta ) = 5\theta 1 + \theta 2 + 2, \gamma 2(\theta ) = 2\theta 2 + 1.5\theta 1 + 1.5,

\alpha 1(d) =  - 2(1 + 0.25 sin(2\pi t))d1  - 1.5d2 + 28.75,

\alpha 2(d) =  - 4(1 + 0.47 cos(\pi t))d2  - d1 + 41,

c11(x) = 0.01x211 + 0.5x11, c12(x) = 0.02x212 + 2x12 + 7| cos(\pi t)| ,
c21(x) = 0.03x221 + 3x21 + 16.25, c22(x) = 0.02x212 + 2x12 + 11.5.

(4.15)

We note that the quantities \theta 1, \theta 2, d1, d2 also depend on xij because of (4.6). With
the initial condition x = (0, 0.5, 1.5, 0)\top and xmax = 1.9, the numerical solutions of the
projected dynamic system (4.8) are shown in Figure 4.5 on the left. For comparison,
the solution of the original system \.x = F (x) is also shown in Figure 4.5 on the right.
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Fig. 4.6. The iteration number (at each time point tn) of the iterative method (4.14) and the
semismooth Newton method mentioned in section 1. Left: h = 2 - 8. Right: h = 2 - 9.

In Figure 4.6, we show the iteration number at each time point for the iterative
method (4.14) and the semismooth Newton method mentioned in section 1. We see
that when h = 2 - 8 the method needs more iterations, while if we reduce the step-size
to h = 2 - 9, it converges with a rate similar to the semismooth Newton method. For
the proposed iterative method (4.14), the reduction of the iteration number confirms
our theoretical analysis very well (cf. Remark 2.2).

5. Conclusions. We proposed an iterative method for DNCP and made a con-
vergence analysis based on the one-sided Lipschitz condition for the ODE system and
the classical Lipschitz condition for the complementarity system. We proved that the
new iterative method has two different convergence properties. In the case when the
method is applied to a fixed number of time points, i.e., J is fixed, it converges with
a rate \rho = O(h), and therefore, a smaller h results in a better convergence rate. In
the case when the method is applied to a fixed length of time interval, i.e., T is fixed,
the method converges superlinearly with a rate independent of h. The general idea
behind the proposed iterative method is that we solve the complementarity system
and the differential system separately via an iteration of Gauss--Seidel style and thus
many existing numerical methods for each of these two systems can be used with-
out changes. In particular, in some cases we can solve the complementarity system
efficiently via optimization solvers. For DLCPs, the new iterative method avoids solv-
ing a lot of linear systems that need to form the matrix Mh for the direct method
(cf. (1.6a)--(1.6b)) and the Clarke Jacobian matrix V k

j for the semismooth Newton
method (cf. (1.7)). For large-scale problems, this is an important advantage for sav-
ing memory storage and computation time. The time-integrator used in this paper
is the Backward-Euler method, by which the precision of the numerical solution is
only of oder \scrO (h). To improve the precision we can solve the differential system by
higher-oder implicit Runge--Kutta methods and then similar to (1.8) (or (1.11)) we
solve the discrete differential and complementarity systems separately via iterations.
The details on this aspect, especially the convergence analysis of the corresponding
iterative algorithms and the computation of the discrete differential system, will be
addressed in future work.

Appendix A. The proof of Lemma 2.2. The result for \psi (1, J, k) (i.e., r = 1)
is well-known and can be verified by routine calculation. For r \not = 1, if k = 1 we have\sum J

j1=1 r
 - j1 = r - 1(1 - r - J )

1 - r - 1 = r - J

1 - r  - 1
1 - r and this implies that (2.4) holds for k = 1.
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Suppose (2.4) holds some k > 1. Then, we have\sum J

j1=1

\sum j1

j2=1
\cdot \cdot \cdot 
\sum jk - 1

jk=1

\sum jk

jk+1=1
r - jk+1

=
\sum J

j1=1

\biggl[ \sum j1

j2=1
\cdot \cdot \cdot 
\sum jk - 1

jk=1

\sum jk

jk+1=1
r - jk+1

\biggr] 
=
\sum J

j1=1

\biggl[ 
r - j1

(1 - r)k
 - 
\sum k

l=1

\biggl( 
j1 + k  - l  - 1

k  - l

\biggr) 
1

(1 - r)l

\biggr] 
=

r - J

1 - r  - 1
1 - r

(1 - r)k
 - 
\sum k

l=1

1

(1 - r)l

\biggl[ \sum J

j1=1

\biggl( 
j1 + k  - l  - 1

k  - l

\biggr) \biggr] 
=

r - J

(1 - r)k+1
 - 1

(1 - r)k+1
 - 
\sum k

l=1

1

(1 - r)l

\biggl( 
J + k  - l
k  - l + 1

\biggr) 
=

r - J

(1 - r)k+1
 - 
\sum k+1

l=1

1

(1 - r)l

\biggl( 
J + k  - l
k  - l + 1

\biggr) 
,

where for the fourth equality we used a well-known identity about the binomial coef-
ficients, namely \sum p

l=1

\biggl( 
l + \~k  - 1

\~k

\biggr) 
=

\biggl( 
p+ \~k
\~k + 1

\biggr) 
for any \~k \geq 0. Thus, (2.4) also holds for k + 1.

Appendix B. Details of gPC expansion technique. In this appendix, the
show details about how to get the deterministic system (4.3) via the gPC expansion
technique. The gPC seeks to obtain a global polynomial approximation for a paramet-
ric (random) function. Let \phi ql(\xi l) be the univariate orthogonal polynomial of degree
ql (the special form of \phi ql(\xi l) depends on the density function of the input random
parameter \xi l). Then, the high dimensional polynomial bases \Phi q(\xi ) are constructed
by tensorizing the one dimensional bases

\Phi q(\xi ) =
\prod d

l=1
\phi ql(\xi l).(B.1)

Moreover, the bases are chosen as
\int 
\rho (\xi )\Phi p1

(\xi )\Phi p2
(\xi ) = \delta p1p2

, where \rho (\xi ) is the joint
density function of the random parameters.

With the above gPC basis functions, we approximate the \xi -dependent functions
x(t, \xi ) and y(t, \xi ) via the following truncated expansions:

x(t, \xi ) \approx 
\sum q

l=1
\~xl(t)\Phi l(\xi ), y(t, \xi ) \approx 

\sum q

l=1
\~yl(t)\Phi l(\xi ),(B.2)

where \{ \~xq(t), \~yq(t)\} ql=1 are coefficients that we need to compute. If the maximal

polynomial degree is p, the number of the basis gPC functions is q = (p+d)!
p!d! (see

e.g., [34]). If we order the gPC basis functions \{ \Phi q(\xi )\} ql=1 by the polynomial degree
in an ascending order, e.g., in lexicographical order deg(\Phi 1(\xi )) < deg(\Phi 2(\xi )) < \cdot \cdot \cdot <
deg(\Phi q(\xi )), the mean values and the standard derivations can be calculated as
(B.3)\Biggl\{ 

\BbbE (x(t, \xi )) = \~x1(t), \BbbE (y(t, \xi )) = \~y1(t), mean value,

\sigma (x(t, \xi )) =
\sqrt{} \sum q

l\geq 2 | \~xl(t)| 2, \sigma (y(t, \xi )) =
\sqrt{} \sum q

l\geq 2 | \~yl(t)| 2, standard derivation.
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Next we introduce the basic idea of the stochastic testing (collocation) method
in [35]. Let \{ \xi 1, \xi 1, . . . , \xi q\} be q collocation points. Then, by substituting gPC expan-
sions (B.2) into the circuit equation (4.2a) and by imposing the collocation condition
on the sample points, we get the following large-scale deterministic DNCP:

Ci

\sum q

l=1
\.\~xl(t)\Phi i,l =  - R

\Bigl( \sum q

l=1
\~xl(t)\Phi i,l

\Bigr) 
+B

\sum q

l=1
\~yl(t)\Phi i,l + Is(t),

0 \leq 
\sum q

l=1
\~yl(t)\Phi i,l \bot N

\sum q

l=1
\~xl(t)\Phi i,l +M

\sum q

l=1
\~yl(t)\Phi i,l \geq 0,

(B.4)

where i = 1, 2, . . . , q, Ci = C(\xi i), and \Phi i,q = \Phi q(\xi 
i). Notice that choosing a good

collocation set to guarantee the well-posedness of the above scheme is not a trivial
work. Here, we adopt the strategy in [35], by which the collocation points are chosen
as a subset (with the largest possible contribution) of the tensor grid of Gaussian
quadrature points. Other types of collocation methods such as sparse grid, least-
squares, and compressed sampling can also be used, and one can refer to [21, 22] for
more details.

By defining the symbols

\widehat \Phi =

\left(   \Phi 1,1 \cdot \cdot \cdot \Phi 1,q

...
. . .

...
\Phi q,1 \cdot \cdot \cdot \Phi q,q

\right)   , X(t) = (\Phi \otimes Im)

\left(   \~x1(t)
...

\~xq(t)

\right)   , Y (t) = (\Phi \otimes In)

\left(   \~y1(t)
...

\~yq(t)

\right)   ,

\widehat B = B \otimes Iq, \widehat C = diag(C1, C2, . . . , Cq)\otimes Im,\widehat M =M \otimes Iq, \widehat N = N \otimes Iq, \widehat Is(t) = Iq \otimes Is(t),

we can rewrite (B.4) as (4.3). When \{ X(t), Y (t)\} are ready, we can compute \{ \~xq(t),
\~yq(t)\} ql=1 as follows:\left(   \~x1(t)

...
\~xq(t)

\right)   = (\widehat \Phi  - 1 \otimes Im)X(t),

\left(   \~y1(t)
...

\~yq(t)

\right)   = (\widehat \Phi  - 1 \otimes Im)Y (t).

Then, we can explore the stochastic information of the circuit according to (B.3).
For the numerical experiments in section 4.1, we set p = 2 (the maximal polyno-

mial degree of the basis gPC functions), and therefore, we have q = 6 gPC functions
in total. For the reader's convenience, we list them as follows:

\Phi 1(\xi ) = 1, \Phi 2(\xi ) = \xi 1, \Phi 3(\xi ) =
1

2
(3\xi 21  - 1),

\Phi 4(\xi ) = \xi 2, \Phi 5(\xi ) = \xi 1\xi 2, \Phi 6(\xi ) = \xi 22  - 1.
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