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ACCELERATION OF THE TWO-LEVEL MGRIT ALGORITHM VIA
THE DIAGONALIZATION TECHNIQUE\ast 

SHU-LIN WU\dagger AND TAO ZHOU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The multigrid-reduction-in-time (MGRIT) algorithm is an efficient parallel-in-time
algorithm for solving dynamic problems. The goal of this paper is to accelerate this algorithm via
two strategies. The first strategy is to improve the convergence rate by using the 2nd-order Lobatto
IIIC (LIIIC-2) method as the \scrG -propagator, instead of using the backward-Euler method which is
the common choice in this field. For a system of linear ODEs with a symmetric positive definite
(SPD) coefficient matrix, we show that such a choice reduces the convergence factor of the MGRIT
algorithm from 0.1 to 0.02. We prove a robust convergence factor for the MGRIT algorithm, which
is independent of the eigenvalues of the coefficient matrix and the ratio J = \Delta T/\Delta t. The second
strategy is to make the coarse-grid-correction (CGC) parallel by using the diagonalization technique.
By properly choosing the involved parameter, we show that the new MGRIT algorithm has the same
convergence rate as that of the original algorithm. Moreover, we show that within the framework
of the parallel CGC the cost of the LIIIC-2 method, which is an implicit two-stage Runge--Kutta
method, can be reduced to the same cost of the backward-Euler method. The idea toward this goal is
still a suitable application of the diagonalization technique. Numerical experiments for the advection-
diffusion equations with uncertain coefficients and the Gray--Scott model are given to support our
findings.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . multigrid-reduction-in-time (MGRIT) algorithm, acceleration, convergence analy-
sis, diagonalization technique, parallel coarse-grid-correction
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1. Introduction. Considerable research has been devoted recently to the devel-
opment of parallel-in-time (PinT) methods for solving differential equations; see the
recent survey paper [14] for an introduction to this field.1 Parareal, proposed by Lions,
Maday, and Turinici in [24], is one of the most popular algorithms for solving these
equations and has been extensively studied [11, 32, 37, 38, 39]. Applications of the
parareal algorithm, together with some closely relevant algorithms (e.g., the PFASST
algorithm [6, 30, 33], the ParaExp algorithm [13], the projection-based parareal algo-
rithm [4], and the space-time Schwarz method [20, 21]), can be found in many fields,
such as optimal control [3, 27, 29, 31, 32], Hamiltonian computation [4, 5, 15], tur-
bulent plasma simulations [34, 35], time-periodic problems [12], and Volterra partial
integral-differential problems [22, 40, 43].

The parareal algorithm can be interpreted as a two-level multigrid-in-time method
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A3422 SHU-LIN WU AND TAO ZHOU

[11], and in this framework the authors of [9] made a novel generalization based
on applying multigrid reduction techniques [36] to time integration. The result-
ing multigrid-reduction-in-time (MGRIT) algorithm has been implemented in the
open-source XBraid package [44], and it was shown that the existing sequential time-
stepping methods can be parallelized by wrapping the code according to the XBraid
software interface; see [8]. The mechanisms of these two algorithms are similar and
can be briefly described as follows. Let \scrF and \scrG be two numerical propagators, which
are, respectively, associated with small step-size \Delta t and large step-size \Delta T . These two
step-sizes satisfy \Delta T/\Delta t = J with J \geq 2 being an integer. The \scrF -propagator pro-
ceeds on the fine time grids with initial values specified on the coarse time grids, which
are inaccurate. The inaccuracy of these initial values are improved via the so-called
coarse-grid-correction (CGC) procedure, which is carried out by the \scrG -propagator.
The difference between MGRIT and parareal is that these two algorithms use two dif-
ferent relaxation schemes, known as the F-relaxation and the FCF-relaxation; see [2, 9]
for more details. According to [10, Theorem 4], the MGRIT algorithm can be formu-
lated in the parareal fashion as follows:

(1.1) uk+1
n+1 = \scrF J(\Delta t,\scrF J(\Delta t, ukn - 1)) + \scrG (\Delta T, uk+1

n ) - \scrG (\Delta T,\scrF J(\Delta t, ukn - 1)),

where k \geq 0 is the iteration index and n = 1, 2, . . . , Nt  - 1 with Nt =
T
\Delta T . A step-by-

step explanation of the MGRIT algorithm can be found in [2]. To start the iteration,
we need two initial conditions, uk0 = u0 and uk1 = u1 = \scrF J(\Delta t, u0)

2, which hold for all
k \geq 0. Besides the parareal algorithm and the MGRIT algorithm introduced above,
other PinT algorithms have been proposed recently, e.g., the parallel preconditioner
technique [25, 26].

Convergence of the parareal algorithm was carefully justified in past years; see,
e.g., [11, 37, 38, 39]. In particular, for a linear ODE system with coefficient matrix
A \in \BbbR m\times m,

(1.2) u\prime (t) +Au(t) = f(t) with u(0) = u0 and t \in (0, T ),

it was proved in [11] that the parareal algorithm has constant convergence factor
\rho \approx 0.3 if the backward-Euler method is chosen as the \scrG -propagator, \scrF is the exact
propagator (i.e., \scrG = backward-Euler and \scrF = e - A\Delta T ), and A is a symmetric positive
definite (SPD) matrix. Such a convergence factor is independent of the eigenvalues
of A and the ratio J . In [32, 37, 38], this result is extended to the case that \scrF is a
practical numerical propagator, e.g., the backward-Euler method, the 2nd- and 3rd-
order singly diagonally implicit Runge--Kutta (SDIRK) methods, and the TR/BDF2
method (i.e., the ode23tb solver in MATLAB). For the case that A has complex
eigenvalues, i.e., A is not an SPD matrix, the convergence of the parareal algorithm
is justified in [39]. Quantitative analysis of the convergence factor of the MGRIT
algorithm is relatively rare. Numerical plotting given in [2] implies that this algorithm
has a smaller convergence factor than the parareal algorithm. For example, for the
linear ODE system (1.2) with SPD matrix A, the calculation by [2, Remark 3.5]
indicates that the MGRIT algorithm has a convergence factor of \rho \approx 0.05 when J = 2
and \scrG = \scrF = backward-Euler. More convergence studies of the MGRIT algorithm
can be found in [7, 8, 18]. According to [2, 11], on sufficiently long time intervals, i.e.,
Nt = T

\Delta T \gg 1, the convergence factors of the parareal algorithm and the MGRIT

2Here, \scrF J (\Delta t,\bfv ) denotes a value calculated by applying successively J steps of the fine propa-
gator \scrF to a differential equation with initial value \bfv and small step-size \Delta t.
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ACCELERATED MGRIT ALGORITHM A3423

algorithm are

\rho = max
z\in \sigma (\Delta TA)

\scrK parareal(J, z), \scrK parareal(J, z) :=

\bigm| \bigm| \bigm| \scrR J
f (

z
J ) - \scrR g(z)

\bigm| \bigm| \bigm| 
1 - | \scrR g(z)| 

,

\rho = max
z\in \sigma (\Delta TA)

\scrK mgrit(J, z), \scrK mgrit(J, z) :=
| \scrR J

f (
z
J )| 
\bigm| \bigm| \bigm| \scrR J

f (
z
J ) - \scrR g(z)

\bigm| \bigm| \bigm| 
1 - | \scrR g(z)| 

,

(1.3)

where \scrR g and \scrR f are the stability functions of the \scrG - and \scrF -propagators. Here and
hereafter, \sigma (\cdot ) denotes the spectrum of the involved matrix. We call \scrK mgrit (and
\scrK parareal) the ``contraction factor,"" which is the convergence factor corresponding to
a single eigenvalue.

For both the parareal algorithm and the MGRIT algorithm, the backward-Euler
method is a common choice for the \scrG -propagator. This is natural since, on the one
hand, the \scrG -propagator should be strongly stable because it is used with large step-
size \Delta T, and, on the other hand, the \scrG -propagator should be as cheap as possible,
because the CGC procedure is sequential in time and has an important influence on
the speedup of both PinT algorithms. If we use an expensive time-integrator for \scrG ,
the CGC procedure could be very time-consuming, and this would seriously reduce
the speedup. However, an expensive \scrG -propagator has the potential to accelerate the
convergence rate of these two PinT algorithms; see the discussions in [11] for how this
applies to the parareal algorithm. For example, by using the 2nd-order Lobatto IIIC
(LIIIC-2) method as the \scrG -propagator, we can reduce the convergence factor from
\rho \approx 0.3 to \rho \approx 0.1 for the parareal algorithm and from \rho \approx 0.1 to \rho \approx 0.02 for the
MGRIT algorithm. See Figure 1 for illustrations.
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Fig. 1. Left: comparisons of the convergence factors of the parareal by using two different
\scrG -propagators. Right: similar results for the MGRIT algorithm. Here, we choose for \scrF the exact
propagator, i.e., \scrF = e - A\Delta T . If we choose for \scrF some strongly stable Runge--Kutta method, e.g.,
the TR/BDF2 method or the 2nd-order/3rd-order SDIRK method, the plots appear similar.

The first goal of this paper is to make a rigorous convergence analysis of the
MGRIT algorithm using for \scrG the LIIIC-2 method in the case when A is an SPD
matrix. We will prove that this algorithm has a constant convergence factor of \rho \approx 
0.02, which is independent of the eigenvalues of A and the ratio J = \Delta T/\Delta t.

A smaller convergence factor implies that fewer iterations are needed to reach
the prescribed tolerance. But this does not provide essential improvement for the
speedup. The speedup is mainly determined by how fast we can finish the CGC
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A3424 SHU-LIN WU AND TAO ZHOU

procedure in each iteration. The second goal of this paper is to make such a CGC
procedure parallel as well. To achieve this goal we use the following initial conditions
for (1.1):

(1.4) uk0 = u0, u
k
1 = u1, u

k+1
1 = \alpha (uk+1

Nt
 - ukNt

) + u1,

where \alpha \in \BbbR is a free parameter. Then, we can implement the CGC procedure on the
Nt  - 1 coarse time points all at once by using the diagonalization technique proposed
recently [16, 28]. This yields a highly parallel CGC, which dramatically improves
the speedup of the two-level MGRIT algorithm. We remark that a parallel CGC is
not simply a parallelized, mathematically equivalent implementation of the sequential
CGC, but a mathematically different correction that can potentially lead to different
convergence behavior. We prove that if the parameter \alpha satisfies | \alpha | \leq \rho 

1+\rho , then the
MGRIT algorithm with parallel CGC has the same convergence rate as that of the
original algorithm with sequential CGC.

The parallel CGC based on the diagonalization technique was already studied for
the parareal algorithm in [41]. Instead of solving (1.2)---the model that we intend to
solve---Wu [41] applies the \scrG -propagator to a slightly different problem,

(1.5) u\prime (t) +Au(t) = f(t) with u(0) = \alpha u(T ),

where \alpha \in \BbbR is a free parameter. For the MGRIT algorithm, we cannot apply the
\scrG -propagator to (1.5) because in this case the algorithm does not generate a correct
solution; in other words, the converged solution is not the numerical solution of (1.2)
obtained by the \scrF -propagator with step-size \Delta t. It is clear that the converged solution
of the MGRIT algorithm with (1.4) is identical to the numerical solution obtained by
using \scrF directly.

Even though the cost of the parallel CGC is significantly reduced, we still need to
solve a complicated linear algebraic equation by using the LIIIC-2 method. Compared
to using the backward-Euler method, using LIIIC-2 is doubly expensive because it is
a two-stage implicit Runge--Kutta method. For parallel CGC, we show that the cost
of using the LIIIC-2 method can be halved and becomes the same as that of the
backward-Euler method. The tool here, which is still novel, is the application of the
diagonalization technique.

The rest of this paper is organized as follows. In section 2, we prove a robust
convergence rate of the MGRIT algorithm when we choose for \scrG the LIIIC-2 method,
which is independent of the eigenvalues of the coefficient matrix A and the ratio
J = \Delta T/\Delta t. In section 3, we introduce how to design a parallel CGC via the di-
agonalization technique. The reduction of the cost of the LIIIC-2 method in the
framework of such a parallel CGC is also addressed in this section. In section 4, we
provide a convergence analysis of the MGRIT algorithm with parallel CGC. Then, in
section 5 we extend the MGRIT algorithm with parallel CGC to nonlinear problems
by following the idea in [17]. We present our numerical results in section 6, and we
finish this paper in section 7 with some concluding remarks.

2. Robust convergence rate of the MGRIT algorithm. The goal of this
section is to prove that the convergence factor of the MGRIT algorithm, given by
(1.3), is a constant, which is independent of the ratio J and the eigenvalues of A. We
choose for the \scrG -propagator the LIIIC-2 method as follows:

\~un+1 = un  - A\Delta T

2
(\~un+1  - un+1) +

\Delta T

2
(fn  - fn+1) ,

un+1 = un  - A\Delta T

2
(\~un+1 + un+1) +

\Delta T

2
(fn + fn+1) ,

(2.1)
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ACCELERATED MGRIT ALGORITHM A3425

with stability function \scrR g(z) =
1

1+1z+ z2

2

. We consider the following three choices for

\scrF : the exact propagator \scrF = e - A\Delta T , the backward-Euler method, and the 2nd-order
SDIRK method.

2.1. The case \bfscrF = \bfite  - \bfitA \bfDelta \bfitT . In this case, we have

\scrK mgrit(J, z) =
e - z | e - z  - \scrR g(z)| 

1 - \scrR g(z)
=
e - z (\scrR g(z) - e - z)

1 - \scrR g(z)
=
e - z

\Bigl( 
1 - (1 + z + z2

2 )e - z
\Bigr) 

z + z2

2

,

which is independent of J , because \scrR f (z) = e - z. Routine calculation yields

\partial z\scrK mgrit(J, z) =
e - 2z

2(z + z2

2 )2

\bigl( 
2 + 6z + 6z2 + 4z3 + z4  - (2 + 4z + z2)ez

\bigr) 
,

and this function has a unique positive root z0 = 0.9774, which is the maximizer of
\scrK mgrit(J, z). It is easy to get \scrK mgrit(J, z0) = 0.0197.

2.2. The case \bfscrF = backward-Euler. When the backward-Euler method is
chosen as the \scrF -propagator, the function \scrK mgrit(J, z) depends on J, and we want to
derive a J-independent estimate of \scrK mgrit(J, z).

Theorem 2.1. If we choose for \scrF the backward-Euler method, it holds that

max
z\geq 0

\scrK mgrit(J, z) \leq 0.0216 \forall J \geq 5.(2.2)

Proof. The proof consists of two parts. First, for \scrR f (z) = 1
1+z and z > 0 we

claim

\scrR J2

f

\biggl( 
z

J2

\biggr) 
< \scrR J1

f

\biggl( 
z

J1

\biggr) 
\forall J2 > J1 \geq 2.(2.3)

A derivative of \scrR J
f

\bigl( 
z
J

\bigr) 
with respect to J gives

(2.4) \partial J

\Bigl[ 
\scrR J

f

\Bigl( z
J

\Bigr) \Bigr] 
= \scrR J

f

\Bigl( z
J

\Bigr) \Biggl[ 
ln\scrR f

\Bigl( z
J

\Bigr) 
 - z

J

\scrR \prime 
f

\bigl( 
z
J

\bigr) 
\scrR f

\bigl( 
z
J

\bigr) \Biggr] .
Then, by letting s = z

J , r(s) = \scrR f (s), andR(s) = ln r(s) - s r
\prime (s)
r(s) , we have \partial J(\scrR 

J
f (

z
J )) =

rJ(s)R(s). Clearly, it holds that sign(\partial J(\scrR J
f (

z
J ))) = sign(R(s)). Hence, it suffices to

prove R(s) \leq 0 for all s \geq 0. A routine calculation shows

R\prime (s) =
d ln r(s)

ds
 - d ln r(s)

ds
 - s

d2 ln r(s)

ds2
=  - s

(1 + s)2
.

Hence, it holds that R\prime (s) \leq 0 for s \geq 0. This, together with R(0) = 0, gives R(s) \leq 0,
which implies \partial J(\scrR J

f (
z
J )) \leq 0, and this proves (2.3).

Next, we prove (2.2). Since limJ\rightarrow \infty \scrR J
f (

z
J ) = limJ\rightarrow \infty 

1
(1+ z

J )J
= e - z, from (2.3)

we have

e - z \leq \scrR J
f

\Bigl( z
J

\Bigr) 
\leq 1

(1 + z
5 )

5
\forall J \geq 5.(2.5)
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A3426 SHU-LIN WU AND TAO ZHOU

Therefore, for J \geq 5 it holds that

\scrK mgrit(J, z) =
\scrR J

f (
z
J )
\bigm| \bigm| \bigm| \scrR J

f (
z
J ) - \scrR g(z)

\bigm| \bigm| \bigm| 
1 - \scrR g(z)

\leq 1

(1 + z
5 )

5
max

\left\{   
\bigm| \bigm| \bigm| 1
(1+ z

5 )
5  - \scrR g(z)

\bigm| \bigm| \bigm| 
1 - \scrR g(z)

,
| e - z  - \scrR g(z)| 
1 - \scrR g(z)

\right\}   = max\{ | R1(z)| , | R2(z)| \} ,

(2.6)

where R1(z) =
1+z+ z2

2  - (1+ z
5 )

5

(1+ z
5 )

10(z+ z2

2 )
and R2(z) =

e - z(1+z+ z2

2 ) - 1

(1+ z
5 )

5(z+ z2

2 )
. A routine calculation

yields

R\prime 
1(z) = z2(z + 5)9

7z5 + 197z4 + 2310z3  - 1125z2  - 10625z + 3125

61035156250
,

R\prime 
2(z) =

(z + 5)4(7z2 + 22z + 10)

6250
 - e - z(z + 5)4

z5 + 14z4 + 46z3 + 68z2 + 64z + 20

12500
.

The function R\prime 
1(z) has two positive roots, z1,1 = 0.2906 and z1,2 = 2.0382. The

function R\prime 
2(z) has a unique positive root, z2 = 1.0793. We have

R1(0) = 0, lim
z\rightarrow \infty 

R1(z) = 0, R1(z1,1) = 0.0109, R1(z1,2) =  - 0.00327,

R2(0) = 0, lim
z\rightarrow \infty 

R2(z) = 0, R2(z2) =  - 0.0216.

Hence,

max
z\geq 0

| R1(z)| = max\{ | R1(0)| , | R1(\infty )| , | R1(z1,1)| , | R1(z1,2)| \} = 0.0109,

max
z\geq 0

| R2(z)| = max\{ | R2(0)| , | R2(\infty )| , | R2(z2)| \} = 0.0216.

Substituting this into (2.6) gives (2.2).

Remark 2.1. For J = 2, 3, 4, we have maxz\geq 0 \scrK mgrit(J, z) = 0.0410, 0.0239, 0.0156.

2.3. The case \bfscrF = 2nd-order SDIRK. For the case \scrF = 2nd-order SDIRK,
the proof of deriving a J-independent estimate of \scrK mgrit(J, z) is different than it is for
the case \scrF = backward-Euler, because the stability function of the 2nd-order SDIRK
does not satisfy (2.3) uniformly; see Figure 2 (left) for an illustration.

To derive a J-independent estimate of \scrK mgrit(J, z), the following lemma is useful.

Lemma 2.2. Let \scrR f (z) =
1 - z(1 - 2\gamma )
(1+z\gamma )2 , z\dagger = 1

1 - 2\gamma , and \gamma = 2 - 
\surd 
2

2 . Then, it holds

that
1. \scrR J2

f ( z
J2
) > \scrR J1

f ( z
J1
) for z \in (0, J1z\dagger ) if J1, J2 \geq 1 are integers satisfying

J2 > J1;
2. \scrR J

f (
z
J ) \leq e - z\dagger for z \geq 4z\dagger if J \geq 4 is an integer.

Proof. For \scrR f (z) =
1 - z(1 - 2\gamma )
(1+z\gamma )2 with \gamma = 2 - 

\surd 
2

2 , the relationship (2.4) still holds.

Hence, by letting s = z
J , r(s) = \scrR f (s), and R(s) = ln r(s)  - s r

\prime (s)
r(s) , we have

\partial J [\scrR J
f (

z
J )] = rJ(s)R(s). For z \in (0, J1z\dagger ] and J \geq J1, we have s \in (0, z\dagger ) and

thus r(s) = \scrR f (z/J) > 0. Therefore, to prove the first result it is sufficient to prove

R(s) > 0 for s \in (0, z\dagger ). By noting that R(s) = ln r(s) - sd ln r(s)
ds , we have

R\prime (s) =
d ln r(s)

ds
 - d ln r(s)

ds
 - s

d2 ln r(s)

ds2
=  - s

d
\Bigl( 

r\prime (s)
r(s)

\Bigr) 
ds

.
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Fig. 2. Left: for the 2nd-order SDIRK method, its stability function \scrR f (z) =
1 - z(1 - 2\gamma )

(1+z\gamma )2
with

\gamma = 2 - 
\surd 
2

2
does not satisfy (2.3) uniformly for all J \geq 2. Right: the function R1(z) defined by (2.9).

Next, a tedious but routine calculation yields

d
\Bigl( 

r\prime (s)
r(s)

\Bigr) 
ds

=
s2(\gamma  - 2\gamma 2)2  - 2s(\gamma  - 2\gamma 2) + 4\gamma  - 2\gamma 2  - 1

[(1 + s\gamma )(1 - s(1 - 2\gamma ))]
2 .

For \gamma = 1 - 1\surd 
2
and s \in (0, z\dagger ), it is easy to verify s2(\gamma  - 2\gamma 2)2  - 2s(\gamma  - 2\gamma 2) + 4\gamma  - 

2\gamma 2 - 1 < 0. This implies d( r
\prime (s)
r(s) )

\big/ 
ds < 0 and thus R\prime (s) > 0. Since r(0) = \scrR f (0) = 1,

we get R(0) = 0. Now, it is clear that R(s) > 0 holds for all s \in (0, z\dagger ), and this
proves the first result.

We next prove the second result. For J \geq 4, we study the function \scrR J
f (

z
J ) on two

intervals, z \in [4z\dagger , Jz\dagger ] and z > Jz\dagger . For z \in [4z\dagger , Jz\dagger ], by using the first result we
have

\scrR J
f

\Bigl( z
J

\Bigr) 
\leq lim

J\rightarrow \infty 
\scrR J

f

\Bigl( z
J

\Bigr) 
= e - z \leq e - z\dagger .

We next consider z > Jz\dagger . It is easy to see maxz\geq Jz\dagger | \scrR f (z/J)| = 0.2071, and thus
for J \geq 4 it holds that maxz\geq Jz\dagger \scrR J

f (z/J) \leq 0.20714. In summary, for J \geq 4 we have

max
z\geq 4z\dagger 

\scrR J
f

\Bigl( z
J

\Bigr) 
=max

\biggl\{ 
max

z\in [4z\dagger ,Jz\dagger ]
\scrR J

f

\Bigl( z
J

\Bigr) 
, max
z\geq Jz\dagger 

\scrR J
f

\Bigl( z
J

\Bigr) \biggr\} 
\leq max\{ e - z\dagger , 0.20714\} =e - z\dagger .

This completes the proof of the second result.

Theorem 2.3. If we choose for \scrF the 2nd-order SDIRK method, it holds that

(2.7) max
z\geq 0

\scrK mgrit(J, z) \leq 0.0203 \forall J \geq 4 and J is even.

Proof. By using Lemma 2.2, for any even integer J \geq 4 we have

\scrR 4
f

\Bigl( z
4

\Bigr) 
\leq \scrR J

f

\Bigl( z
J

\Bigr) 
\leq e - z if z \in [0, 4z\dagger ],

0 \leq \scrR J
f

\Bigl( z
J

\Bigr) 
\leq e - z\dagger if z \geq 4z\dagger ,

(2.8)

where z\dagger =
1

1 - 2\gamma . For z \in [0, 4z\dagger ] we have (similar to (2.6))

\scrK mgrit(J, z) \leq max\{ | R1(z)| , | R2(z)| \} ,
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where the functions R1(z) and R2(z) are given by

R1(z) = e - z
\scrR 4

f (
z
4 )(1 + z + z2

2 ) - 1

z + z2

2

, R2(z) =
e - z(1 - (1 + z + z2

2 )e - z)

z + z2

2

.(2.9)

For R2(z), we already proved in section 2.1 that

(2.10a) max
z\geq 0

R2(z) = 0.0197.

For the function R1(z), a tedious but routine calculation yields

(2.10b) max
z\geq 0

| R1(z)| = 0.0203.

(See Figure 2 (right) for an illustration.) From (2.10a) and (2.10b), we have

(2.11) max
z\in [0,4z\dagger ]

\scrK mgrit(J, z) \leq max\{ | R1(z)| , | R2(z)| \} = 0.0203.

It remains to consider z \geq 4z\dagger . Let \~z = \scrR J
f (

z
J ) and N(\~z) = \~z2  - \~z\scrR g(z). Then,

(2.12) \scrK mgrit(J, z) =
| N(\~z)| 

1 - \scrR g(z)
.

From the second result in (2.8) we have 0 \leq \~z \leq e - z\dagger . Since \scrR g(z) =
1

1+z+ z2

2

, it is

routine to verify 1
2\scrR g(z) < e - z\dagger . Next, we consider two cases. If e - z\dagger \leq \scrR g(z), the

quadratic function | N(\~z)| attains its maximum at \~z = 1
2\scrR g(z), and thus

(2.13a)

max
z\geq 4z\dagger 

\scrK mgrit(J, z) \leq max
z\geq 4z\dagger 

1
4\scrR 

2
g(z)

1 - \scrR g(z)
= max

z\geq 4z\dagger 

1

4(z + z2

2 )(1 + z + z2

2 )
= 7.8\times 10 - 5.

If e - z\dagger > \scrR g(z), | N(\~z)| attains its maximum at either \~z = 1
2\scrR g(z) or \~z = e - z\dagger .

Hence,

max
z\geq 4z\dagger 

\scrK mgrit(J, z) \leq max

\Biggl\{ 
max
z\geq 4z\dagger 

1
4\scrR 

2
g(z)

1 - \scrR g(z)
, max
z\geq 4z\dagger 

e - 2z\dagger  - e - z\dagger \scrR g(z)

1 - \scrR g(z)

\Biggr\} 

\leq max

\biggl\{ 
7.8\times 10 - 5,

e - 2z\dagger 

1 - e - z\dagger 

\biggr\} 
= 0.0088.

(2.13b)

By using (2.11) and (2.13a)--(2.13b), we get (2.7).

2.4. Other choice of the \bfscrF -propagator. We next show that for other choices
of the \scrF -propagator the convergence factor of the MGRIT algorithm also satisfies
\rho \approx 0.02. We consider the following four Runge--Kutta methods: TR/BDF2 (i.e.,
the ode23tb solver in MATLAB), 3rd-order SDIRK, 4th-order SDIRK, and 5th-order
Radau IIA. For two choices of the \scrG -propagator, we show in Figure 3 the maximum
of \scrK mgrit(J, z) for J \in [8, 105], i.e., max8\leq J\leq 105 \scrK mgrit(J, z). We see that for these
four choices of the \scrF -propagator, the MGRIT algorithm has a constant convergence
factor of \rho \approx 0.1 if \scrG = backward-Euler and \rho \approx 0.02 if \scrG = LIIIC-2.
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Fig. 3. Robust convergence factor of the MGRIT algorithm when we choose for \scrF several other
Runge--Kutta methods. Left: \scrG = backward-Euler. Right: \scrG =LIIIC-2.
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Fig. 4. Contour lines of \scrK mgrit(J, z) on the complex plane z \in \BbbC + when \scrF = e - A\Delta T

(i.e., the exact propagator). Left: \scrG = backward-Euler. Right: \scrG = LIIIC-2. For an implicit
Runge--Kutta method chosen as the \scrF -propagator, the plots appear similar when J \gg 1, because
limJ\rightarrow \infty \scrR J

f (z/J) = e - z.

2.5. The case \bfitA has complex eigenvalues. At the end of this section, we
consider the case when the coefficient matrix A in (1.2) has complex eigenvalues.
In Figure 4, we show the contour lines of \scrK mgrit(J, z) on the complex plane z \in 
\BbbC +. Here, we consider the case when \scrF is the exact propagator. (For an implicit
Runge--Kutta method chosen as \scrF , the plots appear similar when J \gg 1, because
limJ\rightarrow \infty \scrR J

f (z/J) = e - z.) We see that choosing for \scrG the LIIIC-2 method results in
a better result than the backward-Euler method.

Next, we consider the following representative case where the eigenvalues of A
are distributed in a sector region with angle \theta \in (0, \pi 2 ) (see Figure 5 (left) for an
illustration):

(2.14) \lambda (A) \in S(\theta ) := \{ z = x+ iy \in \BbbC : x \geq 0, | y| \leq tan(\theta )x\} .

In Figure 5 (right), for four choices of the \scrF -propagator we show the maximum of
\scrK mgrit(J, z), i.e., max8\leq J\leq 106,z\in \bfS (\theta ) \scrK mgrit(J, z), as a function \theta . Again, we see that
choosing for \scrG the LIIIC-2 method instead of the backward-Euler method results in
a smaller convergence factor.

3. Parallel CGC via the diagonalization technique. The CGC procedure
has an important influence on the speedup of the MGRIT algorithm, because it is
implemented sequentially by an implicit time-integrator \scrG . The goal of this section is
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Fig. 5. Left: a representative distribution of the eigenvalues of the coefficient matrix A in (1.2).
Right: for \lambda (A) \in \bfS (\theta ), the convergence factor of the MGRIT algorithm as a function of \theta .

to propose making such a procedure PinT and derive a convergence analysis for the
new algorithm. Throughout this section, we consider \alpha \not = 0 and the case when all of
the eigenvalues of the coefficient matrix A in (1.2) have positive real parts.

3.1. Applying the diagonalization technique to CGC. Applying the MGRIT
algorithm (1.1) to (1.2) gives

(3.1) uk+1
n+1 = \scrF J

\bigl( 
\Delta t,\scrF J(\Delta t, ukn - 1)

\bigr) 
+\scrR g(\Delta TA)u

k+1
n  - \scrG 

\bigl( 
\Delta T,\scrF J

\bigl( 
\Delta t, ukn - 1

\bigr) \bigr) 
+ \~fn,

where n = 1, 2, . . . , Nt  - 1, \scrR g(\Delta TA) = (Ix +\Delta TA+ (\Delta TA)2

2 ) - 1, and

(3.2) \~fn = \scrR g(\Delta TA)

\biggl[ 
\Delta T

2
(f(Tn) + f(Tn+1)) +

\Delta T 2A

2
f(Tn+1)

\biggr] 
.

To apply the diagonalization technique, we use initial conditions given by (1.4). Let
bkn+1 and bk be two vectors defined as

bkn+1 = \scrR  - 1
g (\Delta TA)

\Bigl( 
\scrF J
\bigl( 
\Delta t,\scrF J(\Delta t, ukn - 1)

\bigr) 
 - \scrG 

\bigl( 
\Delta T,\scrF J

\bigl( 
\Delta t, ukn - 1

\bigr) \bigr) 
+ \~fn

\Bigr) 
,

bk =
\Bigl( \bigl( 

 - \alpha ukNt
+ u1

\bigr) \top 
+ (bk2)

\top , (bk3)
\top , . . . , (bkNt

)\top 
\Bigr) \top 

.
(3.3)

Now, we can represent (3.1) for n = 1, 2, . . . , Nt  - 1 as

uk+1
n+1  - uk+1

n +

\biggl( 
\Delta TA+

(\Delta TA)2

2

\biggr) 
uk+1
n+1 = bkn+1.

This, together with the initial condition uk+1
1 = \alpha (uk+1

Nt
 - ukNt

) + u1, gives\left(          

\left[     
1  - \alpha 
 - 1 1

. . .
. . .

 - 1 1

\right]     
\underbrace{}  \underbrace{}  

:=\bfC \alpha 

\otimes Ix + It \otimes 
\biggl( 
\Delta TA+

(\Delta TA)2

2

\biggr) 
\right)          

\left[     
uk+1
2

uk+1
3
...

uk+1
Nt

\right]     
\underbrace{}  \underbrace{}  
:=\bfU k+1

= bk,(3.4)
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where Ix \in \BbbR m\times m and It \in \BbbR (Nt - 1)\times (Nt - 1) are identity matrices. The matrix C\alpha \in 
\BbbR (Nt - 1)\times (Nt - 1) is an \alpha -circulant matrix and can be diagonalized as follows.

Lemma 3.1. The matrix C\alpha \in \BbbR (Nt - 1)\times (Nt - 1) given by (3.4) can be diagonalized
as

(3.5a) C\alpha = S(\alpha )D(\alpha )S - 1(\alpha ),

where S(\alpha ) = \Lambda (\alpha )V , and

(3.5b)

\Lambda (\alpha ) = diag
\Bigl( 
1, \alpha  - 1

Nt - 1 , . . . , \alpha  - Nt - 2
Nt - 1

\Bigr) 
,

V = [v1, v2, . . . , vNt - 1] with vn =
\Bigl[ 
1, ei

2(n - 1)\pi 
Nt - 1 , . . . , ei

2(n - 1)(Nt - 2)\pi 
Nt - 1

\Bigr] \top 
,

D(\alpha ) = diag(\lambda 1(\alpha ), . . . , \lambda Nt - 1(\alpha )) with \lambda n(\alpha ) = 1 - \alpha 
1

Nt - 1 e - i
2(n - 1)\pi 
Nt - 1 .

Proof. The spectral decomposition of an \alpha -circulant matrix is routine, and the
details can be found in many places; see, e.g., [1, Theorem 2.10].

Based on Lemma 3.1, we can factorize the coefficient matrix of (3.4) as follows:

(3.6)

C\alpha \otimes Ix + It \otimes 
\biggl( 
\Delta TA+

(\Delta TA)2

2

\biggr) 
= (S(\alpha )\otimes Ix)

\biggl( 
D(\alpha )\otimes Ix + It \otimes 

\biggl( 
\Delta TA+

(\Delta TA)2

2

\biggr) \biggr) 
(S - 1(\alpha )\otimes Ix).

This implies that we can solve (3.4) via the following three steps:

(a) (S(\alpha )\otimes Ix)G = bk,

(b)

\biggl( 
\lambda nIx +\Delta TA+

(\Delta TA)2

2

\biggr) 
wn = gn, n = 1, 2, . . . , Nt  - 1,

(c) (S - 1(\alpha )\otimes Ix)U
k+1 = W,

(3.7)

where G = (g1, . . . ,gNt - 1)
\top and W = (w1, . . . ,wNt - 1)

\top . When the fine time points
are variably spaced and the coarse time points are uniformly spaced, we can also
package the CGC procedure as (3.4) (but with a different right-hand term bk), and
thus the diagonalization technique described here is also applicable.

In (3.7), step (b) is directly parallel for all the Nt - 1 time points, and for each j we

need to solve a linear algebraic equation with coefficient matrix \lambda nIx+\Delta TA+ (\Delta TA)2

2 .
In section 3.2 we will address how to solve it efficiently.

Remark 3.1 (FFT for steps (a) and (c) of (3.7)). In (3.7), steps (a) and (c) can
be implemented by the fast Fourier transform (FFT) by noticing that S = \Lambda (\alpha )V
with \Lambda (\alpha ) being a diagonal matrix and V being a Fourier matrix. For example, for
step (a) (and similarly for step (c)) the computation of G can be divided into two
steps, \widetilde G := (\Lambda  - 1(\alpha )\otimes Ix)F

k, G = (V  - 1(\alpha )\otimes Ix) \widetilde G.
Since \Lambda (\alpha ) is diagonal, the computational cost of \widetilde G is negligible. For G, the in-
verse FFT can be applied, and the cost, \scrO (mNt log2Nt), is well known.3 The FFT

3Here the appearance of m is due to the fact that the vector \widetilde \bfG consists of Nt  - 1 subvectors
\{ \~gj\} Nt - 1

j=1 , with each \~gj \in \BbbC m, and thus during the (inverse) FFT every element of V  - 1(\alpha ) acts on

vectors (of length m) instead of scalar complex numbers.
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technique can also be implemented in parallel,4 and much research has been done in
this direction; see, e.g., [19]. According to these studies, the cost for computing the

matrix-vector product (V  - 1 \otimes Ix) \widetilde G can be reduced to \scrO (m log2Nt). In summary,
the computational time for step (a) of (3.7) is \scrO (m log2Nt) when the parallel FFT is
used. This cost is significantly smaller than that when solving the linear problem in
step (b) of (3.7), if the size of A is large.

Remark 3.2 (diagonalization technique versus multilevel grids). The MGRIT al-
gorithm is primarily a multilevel method, and two levels are used mainly to simplify
the convergence analysis. The multilevel MGRIT algorithm uses recursion on multiple
grid levels to reduce the computational cost of the CGC procedure in each iteration.
The diagonalization-based MGRIT algorithm uses a parallelized CGC in each itera-
tion, and the computational cost of implementing the CGC procedure is reduced to
solving a few steps of the coarse-grid problem. So, the purpose of using the multilevel
grids is the same as that of the diagonalization technique, but the ideas of these two
techniques are completely different.

In each iteration of the MGRIT algorithm with parallel CGC, let Uk+1 and \widetilde Uk+1,
respectively, be the exact solution and the computed solution of (3.7). Then, the
roundoff error arising from steps (a) and (c) may result in a serious inaccuracy between

U and \widetilde U, and such an inaccuracy leads to divergence of the MGRIT algorithm. For
the parareal algorithm, such a divergence is illustrated by numerical results in [41].
As explained in [16, 41], the roundoff error is dominated by the condition number
of the eigenvector matrix S. A smaller condition number corresponds to a smaller
roundoff error.

Lemma 3.2. For the matrix S given by (3.5b), it holds that

(3.8) Cond2(S) \leq max\{ | \alpha | , | \alpha |  - 1\} .

Proof. For the matrices V and \Lambda given by (3.5b), we have

(3.9)
\| V \| 2 =

\sqrt{} 
Nt  - 1, \| V  - 1\| 2 =

1\surd 
Nt  - 1

,

\| \Lambda \| 2 = max
\Bigl\{ 
1, | \alpha |  - 

Nt - 2
Nt - 1

\Bigr\} 
, \| \Lambda  - 1\| = max

\Bigl\{ 
1, | \alpha | 

Nt - 2
Nt - 1

\Bigr\} 
,

which gives Cond2(S) \leq \| V \| 2\| V  - 1\| 2\| \Lambda \| 2\| \Lambda  - 1\| 2 \leq max\{ | \alpha | , | \alpha |  - 1\} .
From (3.8) we see that Cond2(S) is independent of Nt, and therefore the roundoff

error does not increase when Nt becomes larger.

3.2. Solve step (b) of (3.7) efficiently. In the second step of the diagonal-
ization technique (cf. (3.7)), we need to solve the following Nt  - 1 linear algebraic
equation independently:

(3.10)

\biggl( 
\lambda nIx +\Delta TA+

(\Delta TA)2

2

\biggr) 
wn = gn,

where n = 1, 2, . . . , Nt  - 1 and \lambda n is the nth eigenvalue of the \alpha -circulant matrix C\alpha 

given by (3.4). If we choose for \scrG the backward-Euler method for the standard CGC,
we need to solve the following linear system at each coarse time point:

(3.11) (Ix +\Delta TA)uk+1
n+1 = bkn+1,

4The software or the parallel FFT can be downloaded from http://www.fftw.org/.
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ACCELERATED MGRIT ALGORITHM A3433

where bkn+1 is given by (3.3). Generally speaking, the cost for solving (3.10) is twice
as expensive as solving (3.11), due to the quadratic term (\Delta TA)2 in (3.10). The goal
here is to halve the cost of solving (3.10).

Theorem 3.3. The linear equation (3.10) is equivalent to the following linear
system:

(3.12)

\biggl( \biggl[ 
\lambda n

\lambda n

\biggr] 
\otimes Ix +

\biggl[ 
\lambda n  - \lambda n
\lambda n 2 - \lambda n

\biggr] 
\otimes \Delta TA

2

\biggr) \biggl[ \widetilde wn

wn

\biggr] 
=

\biggl[ 
gn

gn

\biggr] 
.

The 2\times 2 matrix can be factorized as\biggl[ 
\lambda n  - \lambda n
\lambda n 2 - \lambda n

\biggr] 
= S2(\lambda n)D2(\lambda n)S

 - 1
2 (\lambda n),

where

S2(\lambda n) =

\biggl[ 
\lambda n - \mu 2(\lambda n)

\lambda n

\lambda n - \mu 1(\lambda n)
\lambda n

1 1

\biggr] 
, D2(\~\lambda n) =

\biggl[ 
\mu 1(\lambda n)

\mu 2(\lambda n)

\biggr] 
,

\mu 1(\lambda n) = 1 - 
\sqrt{} 
1 - 2\lambda n, \mu 2(\lambda n) = 1 +

\sqrt{} 
1 - 2\lambda n.

(3.13)

Proof. Let \widetilde A = \Delta TA and \widetilde gn = gn/\lambda n. From the first equation in (3.12), we have

\widetilde wn =

\Biggl( 
Ix +

\widetilde A
2

\Biggr)  - 1\Biggl( \widetilde gn +
\widetilde A
2
wn

\Biggr) 
.

Substituting this into the second equation in (3.12) gives

wn = \widetilde gn  - 
\widetilde A
2

\left[  \Biggl( Ix +
\widetilde A
2

\Biggr)  - 1\Biggl( \widetilde gn +
\widetilde A
2
wn

\Biggr) 
+

2 - \lambda n
\lambda n

wn

\right]  
\leftrightarrow 

\Biggl( 
Ix +

\widetilde A
2

\Biggr) 
wn =

\Biggl( 
Ix +

\widetilde A
2
 - 
\widetilde A
2

\Biggr) \widetilde gn  - 
\biggl( 
1

4
\widetilde A2 +

2 - \lambda n
2\lambda n

\widetilde A+
2 - \lambda n
4\lambda n

\widetilde A2

\biggr) 
wn

\leftrightarrow 

\Biggl( 
Ix +

\widetilde A
\lambda n

+
\widetilde A2

2\lambda n

\Biggr) 
wn = \widetilde gn \leftrightarrow 

\biggl( 
\lambda nIx +\Delta TA+

(\Delta TA)2

2

\biggr) 
wn = gn.

The diagonalization of the 2\times 2 matrix can be verified by direct calculation.

Based on Theorem 3.3, we can compute wn in (3.10) via the following three steps:

(a) (S2(\lambda n)\otimes Ix)H =

\biggl[ 
gn

gn

\biggr] 
,

(b)

\biggl( 
\lambda n

\mu j(\lambda n)
Ix +

\Delta TA

2

\biggr) 
Lj =

hj

\mu j(\lambda n)
, j = 1, 2,

(c) (S - 1
2 (\lambda n)\otimes Ix)

\biggl[ \widetilde wn

wn

\biggr] 
= L,

(3.14)

where H = (h\top 
1 ,h

\top 
2 )

\top , L = (L\top 
1 ,L

\top 
2 )

\top , and \mu 1,2(\lambda n) are given by (3.13), and \lambda n is

given by (3.5b). For Nt \gg 1, from (3.5b) we have \lambda n \approx 1  - e - i
2(n - 1)\pi 
Nt - 1 . In Figure 6

(left) we show the real and imaginary parts of \lambda n

\mu 1,2(\lambda n)
as n varies from 1 to Nt  - 1.

We see that

Re

\biggl( 
\lambda n

\mu 1,2(\lambda n)

\biggr) 
\geq 0 \forall n \geq 1,
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A3434 SHU-LIN WU AND TAO ZHOU

and therefore such a complex shift does not affect the ``positivity"" of the matrix \Delta TA
in (3.14).5 Such a property is useful for designing efficient solvers for (3.14). For
example, for the case A \approx  - \Delta (i.e., A is the spatial discretization matrix of the heat
equations), the multigrid method using the Richardson iteration with a optimized
damping parameter as the smoother works well; see [42].

Similarly to (3.7), we need to take into account the roundoff error arising from
steps (a) and (c) of (3.14). According to [16], such a roundoff error is proportional to
the condition number of the eigenvector matrix S2(\lambda n) (cf. (3.13)). In Figure 6 (right),
we show Cond2(S2) when n varies from 1 to Nt  - 1. We see that Cond2(S2) = \scrO (1),
and therefore the roundoff error arising from steps (a) and (c) of (3.14) is negligible.

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 6. Shown are the quantities \lambda n
\mu 1,2(\lambda n)

on the complex plane (left) and the condition number

of the eigenvector matrix S2 (right) as n varies from 1 to Nt  - 1. Here, \lambda n = 1 - e
 - i

2(n - 1)\pi 
Nt - 1 and

Nt = 10,000.

Remark 3.3. The cost of the standard LIIIC-2 method (2.1) can be also halved
via the diagonalization technique. This is clear by letting \lambda n = 1 throughout this
subsection.

4. Convergence analysis of MGRIT with parallel CGC. Let \{ un\} Nt
n=1 be

the solution computed by the \scrF -propagator with small step-size \Delta t, i.e.,

(4.1) un+1 = \scrF J(\Delta t, un), n = 0, 1, . . . , Nt  - 1.

Then, it is clear that \{ un\} Nt
n=1 satisfies

(4.2) un+1 = \scrF J(\Delta t,\scrF J(\Delta t, un - 1)) + \scrG (\Delta T, un) - \scrG (\Delta T,\scrF J(\Delta t, un - 1)),

with u1 = \scrF J(\Delta t, u0). Let e
k
n = ukn - un be the error of the MGRIT algorithm. Then,

for the linear problem (1.2), it holds that

(4.3a) ek+1
n+1 = \scrR g(\Delta TA)e

k+1
n +

\biggl[ 
\scrR 2J

f

\biggl( 
\Delta TA

J

\biggr) 
 - \scrR g (\Delta TA)\scrR J

f

\biggl( 
\Delta TA

J

\biggr) \biggr] 
ekn - 1,

where k \geq 0 and n = 1, 2, . . . , Nt  - 1, together with

(4.3b) ek0 = ek1 = 0, ek+1
1 = \alpha (ek+1

Nt
 - ekNt

).

5Here, the ``positivity"" of \Delta TA means that all the eigenvalues of this matrix have positive real
parts, i.e., it is a stable matrix.
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ACCELERATED MGRIT ALGORITHM A3435

The goal of this subsection is to study how the error maxn\geq 2 \| ekn\| decays as k in-
creases. To this end, we need the following result.

Theorem 4.1. Let the coefficient matrix A in (1.2) be stable; i.e., all the eigen-
values have positive real parts. Let G and R be two matrices defined by

(4.4) G = \scrR g(\Delta TA), R = \scrR 2J
f

\biggl( 
\Delta TA

J

\biggr) 
 - \scrR g (\Delta TA)\scrR J

f

\biggl( 
\Delta TA

J

\biggr) 
.

Then, the error Ek = ((ek2)
\top , . . . , (ekNt

)\top )\top satisfies

(4.5) \| Ek+1\| \leq \| P - 1Q\| \| Ek\| \forall k \geq 1,

where the block matrices P and Q are defined by
(4.6)

P =

\left[       
Ix  - \alpha G
 - G Ix
0  - G Ix
...

. . .
. . .

. . .

0 . . . 0  - G Ix

\right]       , Q =

\left[         

0  - \alpha G
0 0
R 0 0
0 R 0 0
...

. . .
. . .

. . .

0 . . . 0 R 0 0

\right]         
.

Proof. By using the initial conditions in (4.3b), we have

ek+1
2 = Gek+1

1 = \alpha Gek+1
Nt

 - \alpha GekNt
,

ek+1
3 = Gek+1

2 +Rek1 = Gek+1
2 ,

ek+1
4 = Gek+1

3 +Rek2 , . . . , e
k+1
Nt

= Gek+1
Nt - 1 +RekNt - 2.

With the two matrices P and Q given by (4.6), it is clear that these equations can
be represented as PEk+1 = QEk, which implies (4.5).

Let A = VADAV
 - 1
A with DA = diag(\lambda 1(A), \lambda 2(A), . . . , \lambda m(A)) and VA consisting

of the eigenvectors of A. Define the norm 9 \bullet 9\infty via the \infty -norm,

(4.7) 9 u9\infty := \| (It \otimes VA)u\| \infty \forall u \in \BbbR m(Nt - 1).

Then, for any matrix M \in \BbbR m(Nt - 1)\times m(Nt - 1) the induced matrix norm is

9M9\infty = \| (It \otimes VA)M(It \otimes VA
 - 1)\| \infty .

Let \| \bullet \| = 9 \bullet 9\infty in (4.5). Then, we have

9 P - 1Q9\infty \leq max
z\in \sigma (\Delta TA)

\bigm\| \bigm\| G - 1(z)R(z)
\bigm\| \bigm\| 
\infty ,(4.8a)

where G(z), R(z) \in \BbbR (Nt - 1)\times (Nt - 1) are given by

G(z) =

\left(       
1  - \alpha \scrR g(z)

 - \scrR g(z) 1
0  - \scrR g(z) 1
...

. . .
. . .

. . .

0 . . . 0  - \scrR g(z) 1

\right)       ,

R(z) =

\left(         

0  - \alpha \scrR g(z)
0 0

\phi (z) 0 0
0 \phi (z) 0 0
...

. . .
. . .

. . .

0 . . . 0 \phi (z) 0 0

\right)         
,

(4.8b)
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A3436 SHU-LIN WU AND TAO ZHOU

and

(4.8c) \phi (z) = \scrR 2J
f

\Bigl( z
J

\Bigr) 
 - \scrR J

f

\Bigl( z
J

\Bigr) 
\scrR g(z).

Theorem 4.2. Let \scrG be an A-stable time-integrator, and let the coefficient matrix
A in (1.2) be stable; i.e., all of the eigenvalues have positive real parts. Then for the
MGRIT algorithm with parallel CGC it holds that

9Ek+19\infty \leq max
z\in \sigma (\Delta TA)

\scrK \ast 
mgrit(J, z, \alpha ) 9 Ek9\infty ,(4.9a)

where the norm 9 \bullet 9\infty is defined by (4.7) and the contraction factor \scrK \ast 
mgrit is

\scrK \ast 
mgrit(J, z, \alpha ) = max \{ | \alpha \scrR g(z)| (1 +\scrK mgrit(J, z)) , \scrK mgrit(J, z)\} ,(4.9b)

with \scrK mgrit(J, z) being the contraction factor of the original MGRIT algorithm (cf.
(1.3)).

Proof. The proof is based on (4.8a) and is similar to the proof of the parareal
algorithm given in [41, Theorem 3.2]. The difference lies in the matrix R(z): for the
parareal algorithm the quantity \phi (z) appears along the lower 1st-diagonal,6 while for
the MGRIT algorithm it appears along the lower 2nd-diagonal. For both algorithms,
the matrix G(z), which is an \alpha -circulant matrix, is the same. Therefore, for the
two algorithms the structure of the matrix G - 1(z)R(z) is similar. From the proof
of [41, Theorem 3.2], the infinity norm of this matrix, i.e., \| G - 1(z)R(z)\| \infty , can be
bounded by \scrK \ast 

mgrit(J, z, \alpha ).

By using (4.9b), we have the following conclusion.

Corollary 4.3. For given J \geq 2, let \rho \ast and \rho be the convergence factors of the
MGRIT algorithm with parallel CGC and sequential CGC, i.e., \rho \ast = maxz\in \sigma (\Delta TA) \times 
\scrK \ast 

mgrit(J, z, \alpha ) and \rho = maxz\in \sigma (\Delta TA) \scrK mgrit(J, z). Then, under the assumption of
Theorem 4.2 it holds that

(4.10) \rho \ast = \rho if | \alpha | \leq \rho 

1 + \rho 
.

Proof. From (4.9b), we have

\rho \ast = \rho if | \alpha | \leq max
z\in \sigma (\Delta TA)

\scrK mgrit(J, z)

| \scrR g(z)| (1 +\scrK mgrit(J, z))
.(4.11)

Since all of the eigenvalues of A have positive real parts, and the \scrG -propagator is
A-stable, it holds that | \scrR g(z)| \leq 1 for z \in \sigma (\Delta TA). Therefore, we get

(4.12) \mathrm{m}\mathrm{a}\mathrm{x}
z\in \sigma (\Delta TA)

\scrK mgrit(J, z)

| \scrR g(z)| (1 +\scrK mgrit(J, z))
\geq \mathrm{m}\mathrm{a}\mathrm{x}

z\in \sigma (\Delta TA)

\scrK mgrit(J, z)

1 +\scrK mgrit(J, z)
.

Let z\dagger \in \sigma (\Delta TA) be the maximizer of\scrK mgrit(J, z), i.e., \rho = maxz\in \sigma (\Delta TA) \scrK mgrit(J, z) =
\scrK mgrit(J, z\dagger ). Then, it is clear that

max
z\in \sigma (\Delta TA)

\scrK mgrit(J, z)

1 +\scrK mgrit(J, z)
\geq \scrK mgrit(J, z\dagger )

1 +\scrK mgrit(J, z\dagger )
=

\rho 

1 + \rho 
.

Substituting this into (4.12) gives maxz\in \sigma (\Delta TA)
\scrK mgrit(J,z)

| \scrR g(z)| (1+\scrK mgrit(J,z))
\geq \rho 

1+\rho . This,

together with (4.11), implies (4.10).

6For the parareal algorithm, \phi (z) = \scrR J
f

\bigl( 
z
J

\bigr) 
 - \scrR g(z).
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ACCELERATED MGRIT ALGORITHM A3437

Corollary 4.3 implies that the MGRIT algorithm with parallel CGC has the same
convergence factor as that of the algorithm with sequential CGC if the parameter | \alpha | 
does not exceed \rho 

1+\rho . Taking into account the condition number of the eigenvector

matrix S (cf. Lemma 3.2), which is proportional to the roundoff error arising from the
first and third steps of the diagonalization technique, it is clear that the best choice
of the parameter \alpha is

(4.13) \alpha opt =
\rho 

1 + \rho 
with \rho = max

z\in \sigma (\Delta T\bfA )
\scrK mgrit(J, z).

From Figure 1 (right), we see \rho \geq 0.02 if the LIIIC-2 method is chosen for \scrG and
\rho \geq 0.1 if the backward-Euler method is chosen for \scrG . Hence, it holds that

(4.14) Cond2(S) =

\Biggl\{ 
\scrO (102) if \scrG = LIIIC-2,

\scrO (10) if \scrG = backward-Euler.

This implies that the roundoff error of the diagonalization technique is negligible and
is independent of Nt, the number of the coarse time points.

5. The nonlinear case. In this section, we briefly discuss how to apply the
diagonalization technique to nonlinear problems

(5.1) u\prime (t) = f(t, u(t)), u(0) = u0.

The formula of the LIIIC-2 method applied to (5.1) is

(5.2)

\Biggl\{ \widetilde un+1 = un + \Delta T
2 (f(Tn, \widetilde un+1) - f(Tn+1, un+1)) ,

un+1 = un + \Delta T
2 (f(Tn, \widetilde un+1) + f(Tn+1, un+1)) .

Subtracting the second equation from the first gives

\widetilde un+1  - un+1 =  - \Delta Tf(Tn+1, un+1) \Rightarrow \widetilde un+1 = un+1  - \Delta Tf(Tn+1, un+1).

Then, substituting this into the second equation of (5.2) gives

(5.3) un+1 = un +
\Delta T

2
(f(Tn+1, un+1) + f(Tn, un+1  - \Delta Tf(Tn+1, un+1)))\underbrace{}  \underbrace{}  

:=\bff (\Delta T,un+1)

.

Now, with the quantity bk given by (3.3)7 we can represent the CGC procedure as
follows: \left(          

\left[     
1  - \alpha 
 - 1 1

. . .
. . .

 - 1 1

\right]     
\underbrace{}  \underbrace{}  

:=\bfC \alpha 

\otimes Ix

\right)          

\left[     
uk+1
2

uk+1
3
...

uk+1
Nt

\right]     
\underbrace{}  \underbrace{}  
:=\bfU k+1

 - 

\left[     
f(\Delta T, uk+1

2 )

f(\Delta T, uk+1
3 )

...

f(\Delta T, uk+1
Nt

)

\right]     
\underbrace{}  \underbrace{}  
:=\bfF (\Delta T,\bfU k+1)

= bk.(5.4)

Following the idea in [17], next we apply a Newton-type method to solve (5.4).
This leads, with some initial guess U[0], to the following iteration:

Uk+1
l+1 = Uk+1

l  - J - 1(Uk+1
l )

\bigl( 
(C\alpha \otimes Ix)U

k+1
l  - F(\Delta T,Uk+1

l ) - bk
\bigr) 
.(5.5)

7In the nonlinear case, we should let \~fn = 0 in (3.3).
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A3438 SHU-LIN WU AND TAO ZHOU

Here l denotes the iteration index of Newton's method, and J(Uk+1
l ) is an approxi-

mation to the Jacobian matrix C\alpha \otimes Ix  - \partial \bfu f(\Delta T,U
k+1
l ) and is given in [17] as

J(Uk+1
l ) := C\alpha \otimes Ix  - It \otimes \widetilde J(Uk+1

l ),(5.6a)

where It \in \BbbR (Nt - 1)\times (Nt - 1) is an identity matrix, Uk+1
l =

\Bigl( 
(uk+1

1,l )\top , . . . , (uk+1
Nt,l

)\top 
\Bigr) \top 

,

and

\widetilde J(Uk+1
l ) :=

1

Nt  - 1

Nt\sum 
n=2

\nabla uf(\Delta T, u
k+1
n,l ) \in \BbbR m\times m,(5.6b)

with \nabla uf(\Delta T, u
k+1
n,l ) being the Jacobian matrix of f given by (5.3), i.e.,

\nabla uf(\Delta T, u
k+1
n,l ) =

\Delta T

2

\Bigl[ 
\partial uf(Tn, u

k+1
n,l ) + \partial uf(Tn, u

k+1
n,l  - \Delta Tf(Tn, u

k+1
n,l ))

\Bigr] 
 - \Delta T 2

2
\partial uf(Tn, u

k+1
n,l  - \Delta Tf(Tn, u

k+1
n,l ))\partial uf(Tn, u

k+1
n,l ).

(5.6c)

A routine calculation yields that (5.5) can be represented as

J(Uk+1
l )Uk+1

l+1 = F(\Delta T,Uk+1
l ) - (It \otimes \widetilde J(Uk+1

l ))Uk+1
l + bk.(5.7)

Similar to the linear case, we diagonalize C\alpha as C\alpha = S(\alpha )D(\alpha )S - 1(\alpha ) (cf. Lemma
3.1). Then, we can factorize the Jacobian matrix J(Uk+1

l ) as

J(Uk+1
l ) = (S(\alpha )\otimes Ix)

\Bigl( 
D(\alpha )\otimes Ix  - It \otimes \widetilde J(Uk+1

l )
\Bigr) 
(S - 1(\alpha )\otimes Ix).

Hence, similarly to (3.7) we can solve Uk+1
l+1 in (5.7) via the following three steps:

(a) (S(\alpha )\otimes Ix)G = F(Uk+1
l ) - (It \otimes \widetilde J(Uk+1

l ))Uk+1
l + bk,

(b)
\Bigl( 
\lambda n  - \widetilde J(Uk+1

l )
\Bigr) 
wn = gn, n = 1, 2, . . . , Nt  - 1,

(c) (S - 1(\alpha )\otimes Ix)U
k+1
l+1 = W,

(5.8)

where G = (g\top 
1 ,g

\top 
2 , . . . ,g

\top 
Nt - 1)

\top and W = (w\top 
1 ,w

\top 
2 , . . . ,w

\top 
Nt - 1)

\top . It is clear that
step (b) is parallelizable for all of the Nt  - 1 time points.

For nonlinear problems, convergence of the parareal algorithm with parallel CGC
was justified in [41, section 4]. However, the analysis cannot be directly generalized
to the MGRIT algorithm because of two reasons. First, the MGRIT algorithm is
of ``two-step"" form because uk+1

n+1 depends on uk+1
n and ukn - 1; i.e., it evolves from

Tn - 1 and Tn to Tn+1 (cf. (1.1)), while the parareal algorithm is of ``one-step"" form
since uk+1

n+1 depends on uk+1
n and ukn, i.e., from Tn to Tn+1. Second, in [41, section

4] we choose for \scrG the backward-Euler method, and the analysis depends on some
special properties of this method. It is unclear whether these properties still hold for
the LIIIC-2 method or not. For the sake of brevity, we plan to make a convergence
analysis for the MGRIT algorithm with parallel CGC for nonlinear problems in a
future publication.

6. Numerical results. In this section, we provide numerical results to verify
the theoretical conclusions obtained in this paper. In particular, we will focus on the
following two issues:

D
ow

nl
oa

de
d 

10
/3

0/
19

 to
 1

61
.6

4.
20

8.
14

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED MGRIT ALGORITHM A3439

1. whether using the LIIIC-2 method, rather than the backward-Euler method,
as the \scrG -propagator results in faster convergence for the MGRIT algorithm;

2. when using for \scrG the LIIIC-2 method, whether the MGRIT algorithm with par-
allel CGC converges as fast as the algorithm with standard CGC (i.e., CGC sequential
in time).

In all experiments, we apply the diagonalization technique to the LIIIC-2 method
(cf. section 3.2). The MGRIT algorithm starts with a random initial guess and stops
when the global error is less than 10 - 12, i.e.,

max
n\geq 1

\| ukn  - un\| \infty \leq 10 - 12,(6.1)

where \{ un\} is the reference solution on the coarse time points obtained by directly
applying the \scrF -propagator with small step-size \Delta t to the differential equations.

6.1. Advection-diffusion equations with uncertain coefficients. Our first
example is the following 1-D advection-diffusion equation with random diffusivity and
velocity:

\partial tu(x, t;\omega ) = \partial x(c(x;\omega )\partial xu(x, t;\omega )) - \partial x(v(x;\omega )u(x, t;\omega )) + f(x, t),(6.2)

where (x, t) \in ( - 1
2 ,

1
2 ) \times (0, T ) and \omega \in [ - 1, 1]. For simplicity, we assume initial

condition u(x, 0;\omega ) = 0 and boundary condition u(\pm 1/2, t;\omega ) = 0. The quantity
\omega is a random parameter, which is uniformly distributed in [ - 1, 1]. Moreover, we
assume that the random coefficients have the form c(x;\omega ) = c0(x) + c1(x)\omega and
v(x;\omega ) = v0(x) + v1(x)\omega .

For differential equations with random coefficients, an efficient treatment is to use
the so-called generalized polynomial chaos (gPC) expansions [45, 46], which seeks an
approximation uP (x, t;\omega ) of the form

u(x, t;\omega ) \approx uP (x, t;\omega ) :=

P\sum 
p=0

\widehat up(x, t)Lp(\omega ),(6.3)

where Lp(\omega ) is the pth-order Legendre polynomial, and \{ \widehat up(x, t)\} Pp=0 are the unknown
functions that we need to compute. Substituting the approximation (6.3) into the
governing equation (6.2) and then projecting the resulting equation onto the subspace
spanned by the first (P+1) gPC basis polynomials gives the deterministic gPC system

\partial tU(x, t) = \partial x(C(x)\partial xU(x, t)) - \partial x(V (x)U(x, t)) + F (x, t),(6.4a)

where U(x, t) = (u0(x, t), u1(x, t), . . . , uP (x, t))
\top and F (x, t) = (2f(x, t), 0, . . . , 0)\top .

The matrices C(x) = (Cjl(x)) and V (x) = (Vjl(x)) are specified by

Cjl(x) = c0(x)

\int 1

 - 1

Lj(\omega )Ll(\omega )d\omega + c1(x)

\int 1

 - 1

\omega Lj(\omega )Ll(\omega )d\omega ,

Vjl(x) = v0(x)

\int 1

 - 1

Lj(\omega )Ll(\omega )d\omega + v1(x)

\int 1

 - 1

\omega Lj(\omega )Ll(\omega )d\omega ,

(6.4b)D
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A3440 SHU-LIN WU AND TAO ZHOU

where j, l = 0, 1, . . . , P . Define the two matrices

L0 =

\biggl[ \int 1

 - 1

Lj(\omega )Ll(\omega )d\omega 

\biggr] 
=

\left[     
2

2
3

. . .
2

2P+1

\right]     \in \BbbR (P+1)\times (P+1),

L1 =

\biggl[ \int 1

 - 1

\omega Lj(\omega )Ll(\omega )d\omega 

\biggr] 
=

\left[       
0 l1
l1 0 l2

. . .
. . .

. . .

lP - 1 0 lP
lP 0

\right]       \in \BbbR (P+1)\times (P+1),

(6.4c)

where lp = 2(p+1)
4(p+1)2 - 1 , p = 1, 2, . . . , P . Then, the matrices C(x) and V (x) are

C(x) = c0(x)L0 + c1(x)L1, V (x) = v0(x)L0 + v1(x)L1.(6.4d)

We use the following finite-difference formula with mesh-size \Delta x to discretize
(6.4a):

(6.5a)

\left\{           
d\bfU (t)
dt +

\left(    1

\Delta x2
C+

1

2\Delta x
V\underbrace{}  \underbrace{}  

:=\bfA 

\right)    U(t) = F(t), t \in (0, T ),

U(0) = 0,

where U(t) = (u\top 
0 (t), . . . ,u

\top 
P (t))

\top with up(t) \approx (up(x1, t), . . . up(xm, t))
\top and m =

1
\Delta x  - 1. The source term is F(t) = (2f(x1, t), . . . , 2f(xm, t), 0, . . . , 0)

\top . The matrices
C and V are

C =

\left(        

2 \~C1  - C1+ 1
2

 - C2 - 1
2

2 \~C2  - C2+ 1
2

. . .
. . .

. . .

 - Cm - 1 - 1
2

2 \~Cm - 1  - Cm - 1+ 1
2

 - Cm - 1
2

2 \~Cm

\right)        \in \BbbR m(P+1)\times m(P+1),

V =

\left(       
0 V1

 - V1 0 V3
. . .

. . .
. . .

 - Vm - 3 0 Vm - 1

 - Vm - 1 0

\right)       \in \BbbR m(P+1)\times m(P+1),

(6.5b)

where Cj\pm 1
2
= C(xj\pm 1

2
), \~Cj =

C
j - 1

2
+C

j+1
2

2 , Vj = V (xj), and j = 1, 2, . . . ,m. Here,

xj\pm 1
2
= xj \pm 1

2\Delta x. For numerical experiments, we use the data

c0(x) = 1, c1(x) = | x| e - 
| x| 
2 , v0(x) = 10x, v1(x) = \eta 

\biggl( 
1 - 1

5
sin
\Bigl( 
xe10x

2
\Bigr) \biggr) 

,(6.6)

where \eta > 0 is a free parameter used to control the distribution of the eigenvalues of
the discrete matrix A in (6.5a). For example, for three values of \eta , the distributions of
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Fig. 7. For P = 5, \Delta x = 2 - 7, and three values of the parameter \eta in (6.6), shown are the
distributions of the eigenvalues of the coefficient matrix \bfA given by (6.4a). Top row: the overall
distribution plotted by using log scale in the x-axis and linear scale in the y-axis. Bottom row: a
zoom of the distribution plotted by using linear scale for both the x-axis and the y-axis. The tangent
point which corresponds to the angle \theta is indicated by a circle. The values of \theta are \theta = 0.55 for
\eta = 25, \theta = 0.98 for \eta = 50, and \theta = 1.24 for \eta = 130.

the eigenvalues, together with the angle \theta , are shown in Figure 7. As \eta increases, the
angle \theta also increases, which implies that the PDE system (6.4a) becomes convection
dominated.

Let \Delta T = 0.1, J = 50, T = 10, and P = 5. Then for the three values of \eta , we list
in Table 1 the convergence factors \rho of the MGRIT algorithm, where the quantity K
is the iteration number measured in practice and \widehat K is the iteration number predicted

by \rho : \widehat K = \lceil ln( 10 - 12

Initial - Error )/ln \rho \rceil 
8, where ``Initial-Error"" is fixed to 3.25 according

to our numerical experiments. Here, we choose for \scrF the backward-Euler method,

8For any real number r we denote by \lceil r\rceil the minimal integer such that \lceil r\rceil \geq r.
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A3442 SHU-LIN WU AND TAO ZHOU

Table 1
\scrG = backward-Euler(left) and \scrG = LIIIC-2 (right).

\eta 25 50 130
\theta 0.55 0.98 1.24
\rho 0.142 0.257 0.458
K 14 20 33\widehat K 15 23 36

\eta 25 50 130
\theta 0.55 0.98 1.24
\rho 0.029 0.077 0.196
K 8 11 15\widehat K 8 12 17

and for other time-integrators, e.g., the 2nd-, 3rd-, and 4th-order SDIRK methods,
we choose the TR/BDF2 method and the 5th-order Radau IIA method; the results
are very similar. We see that, compared to the backward-Euler method, the LIIIC-2
method results in an approximately 50\% reduction of the iteration number for the
MGRIT algorithm. Moreover, we see that for both the backward-Euler method and
the LIIIC-2 method, the convergence factor predicts the practical convergence rate
very well.

Next we fix the \scrG -propagator to the LIIIC-2 method and compare the convergence
rates of the MGRIT algorithm using parallel CGC and sequential CGC. For \eta = 25
and \eta = 50, we show in Figure 8 the measured convergence rates of the MGRIT
algorithm using two types of CGC. Here, for each \eta we consider three values of \alpha ,
which is an important parameter in the diagonalization technique (cf. (1.4)). From
Table 1 (right), we see that for these two \eta the convergence factors of the MGRIT
algorithm are \rho = 0.029 and \rho = 0.077. Then, according to Corollary 4.3 we know
that the MGRIT algorithm with parallel CGC has the same convergence rate as the
algorithm with sequential CGC if

| \alpha | \leq 

\Biggl\{ 
0.029

1+0.029 = 0.028 if \eta = 25,
0.077

1+0.077 = 0.071 if \eta = 50.

From Figure 8 we see that this theoretical result predicts the numerical results very
well. In particular, we see that the MGRIT algorithm with parallel CGC converges
as fast as the algorithm with sequential CGC if \alpha \leq \rho 

1+\rho , while when \alpha exceeds this
value the parallel CGC leads to slower convergence. Here, we only consider the case
\alpha > 0, and for the case \alpha < 0 we will obverse the same numerical results. Again,
we only consider for \scrF the backward-Euler method because for other time-integrators
(e.g., those plotted in Figure 5 (right)) the plots also appear very similar.

Next we study how the convergence rate of the MGRIT algorithm depends on
the discretization parameters \Delta x, P , J, and Nt. We vary one of them and keep the
other three constant. The results are shown in Figure 9.9 Here, we consider the
parallel CGC with \alpha = \rho 

1+\rho according to Corollary 4.3. The convergence factor \rho 
is computed numerically for given values of these four parameters. We see that the
MGRIT algorithm with parallel CGC has robust convergence rate with respect to
these discretization parameters. This can be explained as follows. The eigenvalues of
the coefficient matrix A given by (6.5a) are distributed in a sector S(\theta ) with angle
\theta \approx 0.55 for \eta = 25 and \theta \approx 0.98 for \eta = 50. The angle \theta only slightly changes when
we vary the four discretization parameters. Therefore, the change of these parameters
has no obvious effect on the convergence rate of the MGRIT algorithm.

9In Figure 9 (bottom right), we fix J = 50 and \Delta T = 1
4
, and therefore varying Nt implies that

the length of time interval, i.e., T , is varying. For the other three subfigures, T = 10.
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Fig. 8. For two values of the problem parameter \eta used to define the random function in
(6.6), shown are measured convergence rates of the MGRIT algorithm with two types of GCG. Here,
\Delta T = 0.1, J = 50, T = 10, P = 5, and \Delta x = 2 - 7. If we increase \eta to \eta = 130, the results appear
similar.
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Fig. 9. Dependence of the convergence rate of the MGRIT algorithm on \Delta x, P , J, and Nt.
We vary one of them and keep the other three constant. We consider parallel CGC with parameter
\alpha chosen as \alpha = \rho /(1+\rho ) according to Corollary 4.3, and the results for the sequential CGC appear
similar. Here, \scrF = backward-Euler and \scrG =LIIIC-2. For other Runge--Kutta methods chosen as \scrF ,
the results appear similar as well.
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6.2. The Gray--Scott model. We next consider the 2-D Gray-Scott equations
arising from chemical reaction [23],10 which is a well-known nonlinear PDE model,

\partial tu = \epsilon 1\Delta u - uv2 + \psi (1 - u), \partial tv = \epsilon 2\Delta v + uv2  - (\psi + \tau )v,(6.7a)

where (x, y, t) \in \Omega \times (0, 10) with \Omega = (0, 1)2 and \partial \bfn u = \partial \bfn v = 0 for (x, y) \in \partial \Omega . We
use

u(x, y, 0) = 1 - 1

2
sin(3\pi (x+ y)), v(x, y, 0) =

1

4
sin(3\pi (x+ y)),

\epsilon 1 = 10 - 4, \epsilon 2 = 10 - 6, \psi = 0.024, \tau = 0.06.
(6.7b)

We discretize (6.7a) by the 5-point finite difference method with uniform mesh
size \Delta x. Then, we obtain a large-scale coupled nonlinear system of ODEs and apply
the MGRIT algorithm to this system. For the parallel CGC, we do quasi-Newton
iterations as described in section 5 at each MGRIT iteration. For the sequential
CGC, we do classical Newton iterations at each MGRIT iteration and each coarse
time point. For both cases, the Newton method stops when the residual is less than
10 - 12.

In Figure 10 (left), we compare the convergence rates of the MGRIT algorithm
with two choices of the \scrG -propagator, the backward-Euler method, and the LIIIC-2
method. Similar to the linear case, we see that using for \scrG the LIIIC-2 method saves
a half number of iterations. In Figure 10 (right), using for \scrG the LIIIC-2 method,
we compare the convergence rates of the MGRIT algorithm with parallel CGC and
sequential CGC. In particular, for the parallel CGC we consider four values of the
parameter \alpha . We see that the parallel CGC results in the same convergence rate
as the sequential CGC when \alpha \leq 0.02, while when we continue to increase \alpha , e.g.,
\alpha = 0.05 and \alpha = 0.1, the parallel CGC results in slower convergence.
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Fig. 10. Left: comparison of the convergence rates of the MGRIT algorithm using for \scrG the
backward-Euler method and the LIIIC-2 method. Right: by using for \scrG the backward-Euler method,
we obtain the measured convergence rates of the MGRIT algorithm with sequential CGC and parallel
CGC. Here, we use for \scrF the backward-Euler method, and for other time-integrators, e.g., those
used for Figure 5 (right), the plots appear similar.

It would be interesting to study how the parameter \alpha compares to the theoret-
ical threshold \rho /(1 + \rho ) in the nonlinear case. To this end, for the four values \alpha 

10More details about this model, including the background and the description of the problem
parameters \epsilon 1,2, \psi , and \tau , can be found in https://groups.csail.mit.edu/mac/projects/amorphous/
GrayScott/.

D
ow

nl
oa

de
d 

10
/3

0/
19

 to
 1

61
.6

4.
20

8.
14

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/
https://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED MGRIT ALGORITHM A3445

used for Figure 10 (right) we estimate numerically the convergence factor \rho from the
convergence curve via the relationship

Initial-Error\times \rho k = 10 - 12,

where ``Initial-Error"" denotes the initial error and k is the iteration number (i.e., k = 8
for \alpha = 0.01, 0.02, k = 11 for \alpha = 0.05, and k = 15 for \alpha = 0.1). The theoretical
threshold \rho /(1 + \rho ) is shown in Table 2, and we see that \alpha is close to this threshold
when \alpha \geq 0.02. Therefore, such a threshold is still relevant in the nonlinear case.

Table 2
For the four values of \alpha , shown are the measured convergence factor and the threshold \rho /(1 + \rho ).

\alpha Estimated \rho Threshold \rho /(1 + \rho )
0.01 0.0291 0.0283
0.02 0.0291 0.0283
0.05 0.0762 0.0708
0.1 0.1513 0.1314

Similar to Figure 9, we now show in Figure 11 the iteration numbers of the MGRIT
algorithm when one of the three discretization parameters \Delta x, J, and Nt varies (the
other two parameters are fixed). Here, we consider both parallel CGC and sequential
CGC. We choose for \scrF the backward-Euler method because for other time-integrators,
e.g., those shown in Figure 5 (right), the results appear similar. The results shown in
Figure 11 indicate that, similar to the linear case studied in section 6.1, for nonlinear
problems the MGRIT algorithm also has a robust convergence rate with respect to the
discretization parameters. Moreover, we see that the MGRIT algorithm with parallel
CGC and sequential CGC has a very similar convergence rate.
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Fig. 11. Dependence of the convergence rate of the MGRIT algorithm with sequential CGC
and parallel CGC on the discretization parameters \Delta x (left), J (middle), and Nt (right).

As mentioned in section 5, for nonlinear differential equations we need to do
Newton iterations (inner iteration) for each iteration of the MGRIT algorithm (out
iteration). So, it would be interesting to consider the total Newton iterations defined
by

(6.8) total Newton iterations =

\Biggl\{ \sum kout

k=1 kinner,k (parallel CGC),\sum kout

k=1

\sum Nt

n=2 kinner,k,n (sequential CGC),

where kout denotes the number of the MGRIT iterations as shown in Figure 11. For
the parallel CGC, kinner,k denotes the number of quasi-Newton iterations at the kth
MGRIT iteration. For the sequential CGC, we denote by kinner,k,n the number of
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Newton iterations at the kth MGRIT iteration and the nth coarse time point (for the
sequential CGC we need to apply the \scrG -propagator step by step on the coarse time
points). The total Newton iterations for the MGRIT algorithm are shown in Figure
12, and it is clear that for parallel CGC the number of total Newton iterations is
much less than for sequential CGC. For parallel CGC, the idea of the quasi-Newton
method lies in approximating all of the Jacobian matrices on the Nt  - 1 coarse time
points by a single matrix (see section 5). One can imagine that when Nt increases,
such an approximation becomes increasingly worse. Hence, for parallel CGC we need
more inner iterations (i.e., kinner,k increases) when Nt increases. The result shown in
Figure 12 (right) confirms this very well.

10
1

10
2

10
3

10
4

∆x

T
o
t
a
l
N
e
w
t
io
n
It
e
r
a
t
io
n
s

∆T = 1
8 , J = 50, T = 10

 

 

Sequential CGC

Parallel CGC (α = 0.02)

1
128

1
256

1
32

1
16

1
64 16 32 64 128 256

10
1

10
2

10
3

10
4

J

T
o
t
a
l
N
e
w
t
io
n
It
e
r
a
t
io
n
s

∆x = 0.01, ∆T = 1
8 , T = 10

 

 

Sequential CGC

Parallel CGC (α = 0.02)

128 256 512 1024 2048
10

1

10
2

10
3

10
4

10
5

Nt(= T/∆T )
T
o
t
a
l
N
e
w
t
io
n
It
e
r
a
t
io
n
s

∆x = 0.01, ∆T = 1
32 , J = 32

 

 

Sequential CGC

Parallel CGC (α = 0.02)

Fig. 12. The total Newton iterations defined by (6.8) when one of the three discretization
parameters \Delta x, J, and Nt varies and the others are fixed.

7. Conclusions. We proved that the MGRIT algorithm has robust convergence
rate, i.e., the convergence rate is independent of the distribution of the eigenvalues of
the coefficient matrix and the ratio J = \Delta T/\Delta t, when we choose for \scrG the LIIIC-2
method and certain choices of \scrF . Compared to the backward-Euler method, which
is the common choice for the \scrG -propagator, using the LIIIC-2 method results in an
approximately 50\% reduction of the iterations in practice. By using a suitable diag-
onalization technique, the computation cost for forwarding one step of the LIIIC-2
method can be halved; i.e., the computation cost becomes almost the same as the
backward-Euler method (see section 3.2). One of the key components of the MGRIT
algorithm is the so-called CGC procedure, which is sequential in time and has an im-
portant influence on the speedup. In this paper, we proposed a diagonalization-based
parallel CGC for the MGRIT algorithm. The main idea lies in using the head-tail
coupled condition uk+1

1 = \alpha (uk+1
Nt

 - ukNt
) + u1, with \alpha being a free parameter. With

the LIIIC-2 method used as the \scrG -propagator, we also derived a convergence analysis
for the new MGRIT algorithm. Both the theoretical analysis and numerical results
indicate that if the parameter \alpha satisfies | \alpha | \leq \rho 

1+\rho , the new MGRIT algorithm has
the same convergence rate as the original MGRIT algorithm with sequential CGC,
where \rho is the convergence factor of the latter algorithm.
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