当前位置: 首页 > 学术活动 > 正文
Babuska Problem in Composite Materials and its Applications
时间:2019年09月27日 14:38 点击数:

报告人:李海刚

报告地点:数学与统计学院617室

报告时间:2019年09月28日星期五09:00-10:00

邀请人:高忆先

报告摘要:

This problem was proposed mathematically by Ivo-Babuska, concerning the system of linear elasticity,  modeled by a class of second order elliptic systems of divergence form with discontinuous coefficients.  I will first review some of our results on upper bound estimates by developing an iteration technique with respect to the energy integral to overcome the difficulty from the lack of maximal principle for elliptic systems, then present two very recent results of myself on lower bound estimates and asymptotics of the gradients to show that the blow-up rates are actually optimal in dimensions two and three. Finally, I will show that our framework can be applied to investigate the corresponding concentration phenomenon for p-Lapalacian, Fishler Lapalacian in Finsler geometry, and suspension problems in some fluid-solid model in Stokes equation setting.

主讲人简介:

李海刚,北京师范大学教授、博士生导师。北京师范大学与美国罗格斯(Rutgers)大学联合培养博士生,2009年博士毕业,留校工作至今。2016年获得教育部霍英东青年教师基金,2017年获得教育部自然科学二等奖。主要研究复合材料中的Babuska问题,针对高对比度的复合材料建立了Lame方程组解的梯度的最佳爆破估计,揭示了纤维相对凸性在应力集中现象中的重要性,改进了经典的De Giorgi-Nash-Morser理论在分片常系数椭圆方程情形的正则性结果。已在《Adv. Math.》(2篇)、《Arch. Ration. Mech. Anal.》(2篇)、《Calc. Var. & PDEs》、《Trans. AMS》、《SIAM J. Math. Anal.》等主流数学杂志发表论文20余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号|邮编:130024|电话:0431-85099589|传真:0431-85098237