Well-posedness and large deviations for a class of SPDEs with Lévy noise
报 告 人:: 高洪俊
报告地点:: 数学与统计学院二楼会议室
报告时间:: 2017年07月13日星期四09:30-10:30

In this talk, a class of stochastic partial differential equations (SPDEs) with Lévy noise is concerned. Firstly, the local well-posedness is established by the iterative approximation. Then the large deviation principle (LDP) for the regularized SPDEs is obtained by the weak convergence approach. To get the LDP for SPDEs here, an exponential equivalence of the probability measures is proved. The results can be applied to some types of SPDEs such as stochastic Burgers equation, stochastic b-family equation, stochastic modified Novikov equation and stochastic μ-Hunter–Saxton equation.

发 布 人:科研助理 发布时间: 2017-07-12
高洪俊, 南京师范大学教授, 主要从事非线性水波方程、大气海洋方程和随机偏微分方程及其动力学的研究,现主持国家自然科学基金重点项目和参加973项目各1项。