头部背景图
"吉林省长白山学者讲座教授"及"东师学者讲座教授"梅茗教授2016年讲学通知
标题背景图

    我校“吉林省长白山学者讲座教授” 及“东师学者讲座教授”、加拿大麦吉尔大学及Champlain学院的梅茗教授将于6月7日至8月7日在我校进行为期两个月的学术访问。访问期间将为高年级本科生、研究生、青年教授讲授短期课程《Diffusion phenomena to partial differential equations from fluid dynamics》并作系列学术报告,同时与我校张凯军教授研究组及东北师范大学运筹学与控制论重点学科PI制建设项目项目组的教师进行合作研究。

附1:梅茗教授简介
梅茗,加拿大McGill大学Adjunct Professor及Champlain学院的终身教授。1996年博士毕业于日本国立金泽大学, 1996-1998年在日本金泽大学从事文部省JSPS博士后研究。1999年为金泽大学讲师。2000-2002在奥地利维也纳理工大学及加拿大Alberta大学和McGill大学从事博士后研究,2002-2005任加拿大Concordia大学LTA助理教授及研究副教授。2005至今为加拿大Champlain学院的终身教授及McGill大学Adjunct Professor。梅茗教授是偏微分方程领域知名学者,主要从事流体力学中半导体偏微分方程和生物数学中带时滞反应扩散方程研究,在Archive Rational Math. Mech., SIAM J. Math. Anal., J. Differential Equations, Commun. PDEs 等学术刊物上公开发表论文70余篇,是4家SCI国际数学杂志的编委。多次到我校进行学术交流与访问,与张凯军教授研究组有着长期的而良好的合作关系。2015年被聘为我校“东师学者讲座教授”,2016年被聘为我校“吉林省长白山学者讲座教授”。
梅茗教授个人主页:http://www.math.mcgill.ca/~mei

2016 Short Course / 短期课程
Title(题目):
Diffusion phenomena to partial differential equations from fluid dynamics
流体动力学中偏微分方程的扩散现象
Lecturer(演讲人): Prof. Ming Mei (梅茗教授), 加拿大McGill大学及Champlain学院
东北师范大学讲座教授
Abstract (摘要):
Compressible flow through porous media with a dissipative external force field is usually described as a p-system of hyperbolic conservation laws with damping, a kind of Euler equations. The damping effect makes the system behave as a set of nonlinear diffusion equations, and the solutions possessing diffusion characters are known as nonlinear diffusion waves. Similar phenomena also occur in the hydrodynamic system for the models of semiconductor devices (Euler-Poisson equations). In this short course, we systematically introduce such kind systems of equations, and show how these equations behave like the corresponding nonlinear diffusion equations. The historical background and the new development, as well as the open questions, all will be addressed.
This course is designed for graduates and young researchers with background in partial different equations. The main aim is to introduce the basic theory in the topic of nonlinear diffusions to PDES in fluid dynamics, as well as the frontier research progress, and to enhance the research interest for the graduates and young researchers and to encourage them to involve in.

课程安排

日期

时间

题目

2016.7.01

9:00—11:30

Introduction to mathematical models of fluid dynamics with damping

14:30—17:00

Linear damped wave equations

2016.7.02

9:00—11:30

Nonlinear diffusion equations from porous media fluid

14:30—17:00

p-system of hyperbolic conservation laws: (I) bounded domain

2016.7.04

9:00—11:30

p-system of hyperbolic conservation laws: (II) whole space

14:30—17:00

p-system of hyperbolic conservation laws: (III) half space

2016.7.05

9:00—11:30

Bipolar hydrodynamic system of semiconductors: (I) bounded domain

14:30—17:00

Bipolar hydrodynamic system of semiconductors: (II) whole space

2016.7.06

9:00—11:30

Bipolar hydrodynamic system of semiconductors: (III) half space

2016.7.06

14:30—16:00

Open questions

 

 

底部背景图